Fault Diagnosis of Steel Wire Ropes Based on Magnetic Flux Leakage Imaging Under Strong Shaking and Strand Noises

漏磁 钢丝绳 霍尔效应传感器 探测器 信号(编程语言) 无损检测 噪音(视频) 泄漏(经济) 工程类 结构工程 电子工程 声学 电气工程 磁铁 计算机科学 物理 人工智能 图像(数学) 宏观经济学 经济 程序设计语言 量子力学
作者
Zuopu Zhou,Zhiliang Liu
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:68 (3): 2543-2553 被引量:43
标识
DOI:10.1109/tie.2020.2973874
摘要

Because of its flexibility, high strength, and durability, steel wire rope (SWR) is widely used in irrigation works, bridges, harbors, tourism, and many industrial fields as a vital component. Thus, it can cause accidents and economic losses if local flaws (LFs) of the SWR in service are not detected in time. This article points out two major problems in magnetic flux leakage (MFL) imaging-based nondestructive testing for fault diagnosis of SWR and proposes an integrated signal-processing method specifically designed for addressing the two problems. In this article, the MFL signals are collected by a detector that is formed by a set of permanent magnets and a Hall sensor array. Based on these multichannel MFL signals obtained from the Hall sensor array, we use the principle of multichannel signal fusion to determine rich information from all MFL signals. We solve the strand noise problem by an oblique-directional resampling and filtering method, which avoids severe attenuation in the LF signal. Moreover, the shaking noise is effectively removed by the proposed antishaking filtering based on the median filter. According to our simulation and experiment, the proposed fault diagnosis method for SWR significantly improves the performance of LF detection and localization under strong shaking and strand noises.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Geo_new发布了新的文献求助10
刚刚
蜉蝣发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
老北京完成签到,获得积分10
4秒前
111完成签到 ,获得积分10
4秒前
yan完成签到,获得积分20
4秒前
科研者发布了新的文献求助10
4秒前
4秒前
核桃应助科研通管家采纳,获得30
5秒前
子车茗应助科研通管家采纳,获得20
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
narcol发布了新的文献求助30
6秒前
Owen应助我我我采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
共享精神应助不知名网友采纳,获得10
7秒前
7秒前
8秒前
8秒前
yizhimcfu完成签到,获得积分10
8秒前
桃子完成签到,获得积分10
9秒前
16发布了新的文献求助10
9秒前
11秒前
11秒前
12秒前
小盆呐发布了新的文献求助10
12秒前
斯文败类应助LCY采纳,获得10
13秒前
13秒前
无极微光应助果冻采纳,获得20
13秒前
淡淡土豆应助蜉蝣采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513523
求助须知:如何正确求助?哪些是违规求助? 4607732
关于积分的说明 14506652
捐赠科研通 4543272
什么是DOI,文献DOI怎么找? 2489491
邀请新用户注册赠送积分活动 1471450
关于科研通互助平台的介绍 1443447