Noise and spatial resolution properties of a commercially available deep learning‐based CT reconstruction algorithm

成像体模 迭代重建 图像分辨率 噪音(视频) 图像质量 重建算法 算法 图像噪声 扫描仪 降噪 计算机科学 物理 材料科学 核医学 人工智能 数学 光学 医学 图像(数学)
作者
Justin Solomon,Peijei Lyu,Daniele Marin,Ehsan Samei
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 3961-3971 被引量:118
标识
DOI:10.1002/mp.14319
摘要

Purpose To characterize the noise and spatial resolution properties of a commercially available deep learning‐based computed tomography (CT) reconstruction algorithm. Methods Two phantom experiments were performed. The first used a multisized image quality phantom (Mercury v3.0, Duke University) imaged at five radiation dose levels (CTDI vol : 0.9, 1.2, 3.6, 7.0, and 22.3 mGy) with a fixed tube current technique on a commercial CT scanner (GE Revolution CT). Images were reconstructed with conventional (FBP), iterative (GE ASiR‐V), and deep learning‐based (GE True Fidelity) reconstruction algorithms. Noise power spectrum (NPS), high‐contrast (air–polyethylene interface), and intermediate‐contrast (water–polyethylene interface) task transfer functions (TTF) were measured for each dose level and phantom size and summarized in terms of average noise frequency (f av ) and frequency at which the TTF was reduced to 50% (f 50% ), respectively. The second experiment used a custom phantom with low‐contrast rods and lung texture sections for the assessment of low‐contrast TTF and noise spatial distribution. The phantom was imaged at five dose levels (CTDI vol : 1.0, 2.1, 3.0, 6.0, and 10.0 mGy) with 20 repeated scans at each dose, and images reconstructed with the same reconstruction algorithms. The local noise stationarity was assessed by generating spatial noise maps from the ensemble of repeated images and computing a noise inhomogeneity index, , following AAPM TG233 methods. All measurements were compared among the algorithms. Results Compared to FBP, noise magnitude was reduced on average (± one standard deviation) by 74 ± 6% and 68 ± 4% for ASiR‐V (at “100%” setting) and True Fidelity (at “High” setting), respectively. The noise texture from ASiR‐V had substantially lower noise frequency content with 55 ± 4% lower NPS f av compared to FBP while True Fidelity had only marginally different noise frequency content with 9 ± 5% lower NPS f av compared to FBP. Both ASiR‐V and True Fidelity demonstrated locally nonstationary noise in a lung texture background at all radiation dose levels, with higher noise near high‐contrast edges of vessels and lower noise in uniform regions. At the 1.0 mGy dose level values were 314% and 271% higher in ASiR‐V and True Fidelity compared to FBP, respectively. High‐contrast spatial resolution was similar between all algorithms for all dose levels and phantom sizes (<3% difference in TTF f 50% ). Compared to FBP, low‐contrast spatial resolution was lower for ASiR‐V and True Fidelity with a reduction of TTF f 50% of up to 42% and 36%, respectively. Conclusions The deep learning‐based CT reconstruction demonstrated a strong noise magnitude reduction compared to FBP while maintaining similar noise texture and high‐contrast spatial resolution. However, the algorithm resulted in images with a locally nonstationary noise in lung textured backgrounds and had somewhat degraded low‐contrast spatial resolution similar to what has been observed in currently available iterative reconstruction techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dadaup完成签到 ,获得积分10
刚刚
吉吉完成签到,获得积分10
2秒前
zhuosht完成签到 ,获得积分10
3秒前
Edou完成签到 ,获得积分10
8秒前
凡凡完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
kingfly2010完成签到,获得积分10
13秒前
善善完成签到 ,获得积分10
16秒前
Moonchild完成签到 ,获得积分10
17秒前
HERACLE完成签到 ,获得积分10
19秒前
小录完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
33秒前
潇洒冰蓝完成签到,获得积分10
38秒前
kitsch完成签到 ,获得积分10
40秒前
缓慢的甜瓜完成签到,获得积分10
41秒前
Yynnn完成签到 ,获得积分10
46秒前
糟糕的傲珊完成签到 ,获得积分10
46秒前
rigelfalcon完成签到,获得积分10
49秒前
yurunxintian完成签到,获得积分10
53秒前
又壮了完成签到 ,获得积分10
57秒前
量子星尘发布了新的文献求助10
59秒前
坦率德地完成签到 ,获得积分10
1分钟前
魏钦完成签到 ,获得积分10
1分钟前
Banana发布了新的文献求助10
1分钟前
积极台灯完成签到 ,获得积分10
1分钟前
凌泉完成签到 ,获得积分10
1分钟前
Neko应助科研通管家采纳,获得20
1分钟前
ccmxigua应助科研通管家采纳,获得10
1分钟前
和平使命应助科研通管家采纳,获得10
1分钟前
Hao应助科研通管家采纳,获得10
1分钟前
和平使命应助科研通管家采纳,获得10
1分钟前
愉快的丹彤完成签到 ,获得积分10
1分钟前
陈M雯完成签到 ,获得积分10
1分钟前
Dong完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
喜悦向日葵完成签到 ,获得积分10
1分钟前
一棵树完成签到 ,获得积分10
1分钟前
谢陈完成签到 ,获得积分10
1分钟前
稳重母鸡完成签到 ,获得积分10
1分钟前
Banana完成签到,获得积分10
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584819
求助须知:如何正确求助?哪些是违规求助? 4668720
关于积分的说明 14771614
捐赠科研通 4615409
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467575