Noise and spatial resolution properties of a commercially available deep learning‐based CT reconstruction algorithm

成像体模 迭代重建 图像分辨率 噪音(视频) 图像质量 重建算法 算法 图像噪声 扫描仪 降噪 计算机科学 物理 材料科学 核医学 人工智能 数学 光学 医学 图像(数学)
作者
Justin Solomon,Peijei Lyu,Daniele Marin,Ehsan Samei
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 3961-3971 被引量:118
标识
DOI:10.1002/mp.14319
摘要

Purpose To characterize the noise and spatial resolution properties of a commercially available deep learning‐based computed tomography (CT) reconstruction algorithm. Methods Two phantom experiments were performed. The first used a multisized image quality phantom (Mercury v3.0, Duke University) imaged at five radiation dose levels (CTDI vol : 0.9, 1.2, 3.6, 7.0, and 22.3 mGy) with a fixed tube current technique on a commercial CT scanner (GE Revolution CT). Images were reconstructed with conventional (FBP), iterative (GE ASiR‐V), and deep learning‐based (GE True Fidelity) reconstruction algorithms. Noise power spectrum (NPS), high‐contrast (air–polyethylene interface), and intermediate‐contrast (water–polyethylene interface) task transfer functions (TTF) were measured for each dose level and phantom size and summarized in terms of average noise frequency (f av ) and frequency at which the TTF was reduced to 50% (f 50% ), respectively. The second experiment used a custom phantom with low‐contrast rods and lung texture sections for the assessment of low‐contrast TTF and noise spatial distribution. The phantom was imaged at five dose levels (CTDI vol : 1.0, 2.1, 3.0, 6.0, and 10.0 mGy) with 20 repeated scans at each dose, and images reconstructed with the same reconstruction algorithms. The local noise stationarity was assessed by generating spatial noise maps from the ensemble of repeated images and computing a noise inhomogeneity index, , following AAPM TG233 methods. All measurements were compared among the algorithms. Results Compared to FBP, noise magnitude was reduced on average (± one standard deviation) by 74 ± 6% and 68 ± 4% for ASiR‐V (at “100%” setting) and True Fidelity (at “High” setting), respectively. The noise texture from ASiR‐V had substantially lower noise frequency content with 55 ± 4% lower NPS f av compared to FBP while True Fidelity had only marginally different noise frequency content with 9 ± 5% lower NPS f av compared to FBP. Both ASiR‐V and True Fidelity demonstrated locally nonstationary noise in a lung texture background at all radiation dose levels, with higher noise near high‐contrast edges of vessels and lower noise in uniform regions. At the 1.0 mGy dose level values were 314% and 271% higher in ASiR‐V and True Fidelity compared to FBP, respectively. High‐contrast spatial resolution was similar between all algorithms for all dose levels and phantom sizes (<3% difference in TTF f 50% ). Compared to FBP, low‐contrast spatial resolution was lower for ASiR‐V and True Fidelity with a reduction of TTF f 50% of up to 42% and 36%, respectively. Conclusions The deep learning‐based CT reconstruction demonstrated a strong noise magnitude reduction compared to FBP while maintaining similar noise texture and high‐contrast spatial resolution. However, the algorithm resulted in images with a locally nonstationary noise in lung textured backgrounds and had somewhat degraded low‐contrast spatial resolution similar to what has been observed in currently available iterative reconstruction techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汐尘完成签到,获得积分10
刚刚
刚刚
柯亦云发布了新的文献求助10
1秒前
润柏海完成签到 ,获得积分10
1秒前
dream完成签到 ,获得积分10
1秒前
1秒前
1秒前
kyoko发布了新的文献求助10
1秒前
2秒前
2秒前
wuliqun完成签到,获得积分10
3秒前
簌落发布了新的文献求助10
5秒前
5秒前
SciGPT应助曾经的小松鼠采纳,获得10
6秒前
Emper发布了新的文献求助10
6秒前
7秒前
打打应助自觉棒棒糖采纳,获得10
8秒前
李肖肖发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
陈末应助白米采纳,获得10
9秒前
顺利顺利发布了新的文献求助10
9秒前
某某完成签到,获得积分10
9秒前
11秒前
11秒前
11秒前
Deq完成签到,获得积分10
12秒前
Lucas应助追尾的猫采纳,获得10
13秒前
浮游应助lc339采纳,获得10
14秒前
星辰大海应助WW采纳,获得10
15秒前
蟹蟹发布了新的文献求助10
15秒前
15秒前
英姑应助科研通管家采纳,获得10
16秒前
李宜轩发布了新的文献求助10
16秒前
xiaobai应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
笨笨的怜雪完成签到 ,获得积分10
16秒前
ABBCCC应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得20
16秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453741
求助须知:如何正确求助?哪些是违规求助? 4561252
关于积分的说明 14281645
捐赠科研通 4485241
什么是DOI,文献DOI怎么找? 2456565
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687