Noise and spatial resolution properties of a commercially available deep learning‐based CT reconstruction algorithm

成像体模 迭代重建 图像分辨率 噪音(视频) 图像质量 重建算法 算法 图像噪声 扫描仪 降噪 计算机科学 物理 材料科学 核医学 人工智能 数学 光学 医学 图像(数学)
作者
Justin Solomon,Peijei Lyu,Daniele Marin,Ehsan Samei
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 3961-3971 被引量:118
标识
DOI:10.1002/mp.14319
摘要

Purpose To characterize the noise and spatial resolution properties of a commercially available deep learning‐based computed tomography (CT) reconstruction algorithm. Methods Two phantom experiments were performed. The first used a multisized image quality phantom (Mercury v3.0, Duke University) imaged at five radiation dose levels (CTDI vol : 0.9, 1.2, 3.6, 7.0, and 22.3 mGy) with a fixed tube current technique on a commercial CT scanner (GE Revolution CT). Images were reconstructed with conventional (FBP), iterative (GE ASiR‐V), and deep learning‐based (GE True Fidelity) reconstruction algorithms. Noise power spectrum (NPS), high‐contrast (air–polyethylene interface), and intermediate‐contrast (water–polyethylene interface) task transfer functions (TTF) were measured for each dose level and phantom size and summarized in terms of average noise frequency (f av ) and frequency at which the TTF was reduced to 50% (f 50% ), respectively. The second experiment used a custom phantom with low‐contrast rods and lung texture sections for the assessment of low‐contrast TTF and noise spatial distribution. The phantom was imaged at five dose levels (CTDI vol : 1.0, 2.1, 3.0, 6.0, and 10.0 mGy) with 20 repeated scans at each dose, and images reconstructed with the same reconstruction algorithms. The local noise stationarity was assessed by generating spatial noise maps from the ensemble of repeated images and computing a noise inhomogeneity index, , following AAPM TG233 methods. All measurements were compared among the algorithms. Results Compared to FBP, noise magnitude was reduced on average (± one standard deviation) by 74 ± 6% and 68 ± 4% for ASiR‐V (at “100%” setting) and True Fidelity (at “High” setting), respectively. The noise texture from ASiR‐V had substantially lower noise frequency content with 55 ± 4% lower NPS f av compared to FBP while True Fidelity had only marginally different noise frequency content with 9 ± 5% lower NPS f av compared to FBP. Both ASiR‐V and True Fidelity demonstrated locally nonstationary noise in a lung texture background at all radiation dose levels, with higher noise near high‐contrast edges of vessels and lower noise in uniform regions. At the 1.0 mGy dose level values were 314% and 271% higher in ASiR‐V and True Fidelity compared to FBP, respectively. High‐contrast spatial resolution was similar between all algorithms for all dose levels and phantom sizes (<3% difference in TTF f 50% ). Compared to FBP, low‐contrast spatial resolution was lower for ASiR‐V and True Fidelity with a reduction of TTF f 50% of up to 42% and 36%, respectively. Conclusions The deep learning‐based CT reconstruction demonstrated a strong noise magnitude reduction compared to FBP while maintaining similar noise texture and high‐contrast spatial resolution. However, the algorithm resulted in images with a locally nonstationary noise in lung textured backgrounds and had somewhat degraded low‐contrast spatial resolution similar to what has been observed in currently available iterative reconstruction techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助奋斗的从灵采纳,获得10
刚刚
丰富的冰棍完成签到 ,获得积分10
1秒前
科研通AI6应助赵梓蓉采纳,获得10
1秒前
2秒前
LALA发布了新的文献求助10
4秒前
LTDJYYD完成签到,获得积分10
6秒前
ebby发布了新的文献求助10
6秒前
8秒前
9秒前
123456杯可乐完成签到,获得积分20
9秒前
张小闲完成签到 ,获得积分10
10秒前
能干筝发布了新的文献求助10
10秒前
sfx发布了新的文献求助10
12秒前
ydb123发布了新的文献求助10
13秒前
Darion关注了科研通微信公众号
14秒前
漂亮夏兰发布了新的文献求助10
14秒前
乐乐应助Sophia采纳,获得10
15秒前
15秒前
隐形曼青应助着急的寒天采纳,获得10
16秒前
刘隽轩发布了新的文献求助10
16秒前
milu发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
鹤七完成签到,获得积分10
20秒前
能干筝完成签到,获得积分10
20秒前
玻色完成签到 ,获得积分20
21秒前
1235456完成签到 ,获得积分10
22秒前
飘逸的凝云完成签到 ,获得积分10
23秒前
ydb123完成签到,获得积分10
25秒前
冬日暖阳完成签到,获得积分10
25秒前
tjyangbo发布了新的文献求助10
26秒前
27秒前
追魂墨迹完成签到,获得积分10
28秒前
七七完成签到,获得积分10
30秒前
rsy发布了新的文献求助10
30秒前
30秒前
30秒前
sf完成签到 ,获得积分10
30秒前
30秒前
情怀应助追魂墨迹采纳,获得10
33秒前
含蓄凝梦完成签到,获得积分20
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424308
求助须知:如何正确求助?哪些是违规求助? 4538684
关于积分的说明 14163217
捐赠科研通 4455559
什么是DOI,文献DOI怎么找? 2443800
邀请新用户注册赠送积分活动 1434944
关于科研通互助平台的介绍 1412304