清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Noise and spatial resolution properties of a commercially available deep learning‐based CT reconstruction algorithm

成像体模 迭代重建 图像分辨率 噪音(视频) 图像质量 重建算法 算法 图像噪声 扫描仪 降噪 计算机科学 物理 材料科学 核医学 人工智能 数学 光学 医学 图像(数学)
作者
Justin Solomon,Peijei Lyu,Daniele Marin,Ehsan Samei
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 3961-3971 被引量:118
标识
DOI:10.1002/mp.14319
摘要

Purpose To characterize the noise and spatial resolution properties of a commercially available deep learning‐based computed tomography (CT) reconstruction algorithm. Methods Two phantom experiments were performed. The first used a multisized image quality phantom (Mercury v3.0, Duke University) imaged at five radiation dose levels (CTDI vol : 0.9, 1.2, 3.6, 7.0, and 22.3 mGy) with a fixed tube current technique on a commercial CT scanner (GE Revolution CT). Images were reconstructed with conventional (FBP), iterative (GE ASiR‐V), and deep learning‐based (GE True Fidelity) reconstruction algorithms. Noise power spectrum (NPS), high‐contrast (air–polyethylene interface), and intermediate‐contrast (water–polyethylene interface) task transfer functions (TTF) were measured for each dose level and phantom size and summarized in terms of average noise frequency (f av ) and frequency at which the TTF was reduced to 50% (f 50% ), respectively. The second experiment used a custom phantom with low‐contrast rods and lung texture sections for the assessment of low‐contrast TTF and noise spatial distribution. The phantom was imaged at five dose levels (CTDI vol : 1.0, 2.1, 3.0, 6.0, and 10.0 mGy) with 20 repeated scans at each dose, and images reconstructed with the same reconstruction algorithms. The local noise stationarity was assessed by generating spatial noise maps from the ensemble of repeated images and computing a noise inhomogeneity index, , following AAPM TG233 methods. All measurements were compared among the algorithms. Results Compared to FBP, noise magnitude was reduced on average (± one standard deviation) by 74 ± 6% and 68 ± 4% for ASiR‐V (at “100%” setting) and True Fidelity (at “High” setting), respectively. The noise texture from ASiR‐V had substantially lower noise frequency content with 55 ± 4% lower NPS f av compared to FBP while True Fidelity had only marginally different noise frequency content with 9 ± 5% lower NPS f av compared to FBP. Both ASiR‐V and True Fidelity demonstrated locally nonstationary noise in a lung texture background at all radiation dose levels, with higher noise near high‐contrast edges of vessels and lower noise in uniform regions. At the 1.0 mGy dose level values were 314% and 271% higher in ASiR‐V and True Fidelity compared to FBP, respectively. High‐contrast spatial resolution was similar between all algorithms for all dose levels and phantom sizes (<3% difference in TTF f 50% ). Compared to FBP, low‐contrast spatial resolution was lower for ASiR‐V and True Fidelity with a reduction of TTF f 50% of up to 42% and 36%, respectively. Conclusions The deep learning‐based CT reconstruction demonstrated a strong noise magnitude reduction compared to FBP while maintaining similar noise texture and high‐contrast spatial resolution. However, the algorithm resulted in images with a locally nonstationary noise in lung textured backgrounds and had somewhat degraded low‐contrast spatial resolution similar to what has been observed in currently available iterative reconstruction techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得30
40秒前
危机的慕卉完成签到 ,获得积分10
1分钟前
L2951完成签到 ,获得积分10
1分钟前
1分钟前
achulw完成签到,获得积分10
2分钟前
nojego完成签到,获得积分10
2分钟前
自觉香彤完成签到 ,获得积分10
3分钟前
两个榴莲完成签到,获得积分0
3分钟前
3分钟前
4分钟前
freyaaaaa应助科研通管家采纳,获得50
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
板栗小狗发布了新的文献求助10
5分钟前
板栗小狗完成签到,获得积分10
5分钟前
6分钟前
一叶知秋应助孤巷的猫采纳,获得10
6分钟前
激动的似狮完成签到,获得积分10
6分钟前
ZYP应助科研通管家采纳,获得20
6分钟前
6分钟前
孤巷的猫发布了新的文献求助10
6分钟前
孤巷的猫完成签到,获得积分10
7分钟前
身处人海完成签到,获得积分10
7分钟前
Siren发布了新的文献求助10
7分钟前
tt完成签到,获得积分10
7分钟前
紫荆完成签到 ,获得积分10
7分钟前
华仔应助volunteer采纳,获得10
7分钟前
volunteer完成签到,获得积分10
7分钟前
7分钟前
volunteer发布了新的文献求助10
8分钟前
8分钟前
奈思完成签到 ,获得积分10
8分钟前
ZYP应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
碗碗豆喵完成签到 ,获得积分10
9分钟前
10分钟前
冷傲半邪给冷傲半邪的求助进行了留言
10分钟前
勤劳落雁发布了新的文献求助30
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516107
求助须知:如何正确求助?哪些是违规求助? 4609224
关于积分的说明 14514619
捐赠科研通 4545775
什么是DOI,文献DOI怎么找? 2490916
邀请新用户注册赠送积分活动 1472722
关于科研通互助平台的介绍 1444518