Noise and spatial resolution properties of a commercially available deep learning‐based CT reconstruction algorithm

成像体模 迭代重建 图像分辨率 噪音(视频) 图像质量 重建算法 算法 图像噪声 扫描仪 降噪 计算机科学 物理 材料科学 核医学 人工智能 数学 光学 医学 图像(数学)
作者
Justin Solomon,Peijei Lyu,Daniele Marin,Ehsan Samei
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 3961-3971 被引量:118
标识
DOI:10.1002/mp.14319
摘要

Purpose To characterize the noise and spatial resolution properties of a commercially available deep learning‐based computed tomography (CT) reconstruction algorithm. Methods Two phantom experiments were performed. The first used a multisized image quality phantom (Mercury v3.0, Duke University) imaged at five radiation dose levels (CTDI vol : 0.9, 1.2, 3.6, 7.0, and 22.3 mGy) with a fixed tube current technique on a commercial CT scanner (GE Revolution CT). Images were reconstructed with conventional (FBP), iterative (GE ASiR‐V), and deep learning‐based (GE True Fidelity) reconstruction algorithms. Noise power spectrum (NPS), high‐contrast (air–polyethylene interface), and intermediate‐contrast (water–polyethylene interface) task transfer functions (TTF) were measured for each dose level and phantom size and summarized in terms of average noise frequency (f av ) and frequency at which the TTF was reduced to 50% (f 50% ), respectively. The second experiment used a custom phantom with low‐contrast rods and lung texture sections for the assessment of low‐contrast TTF and noise spatial distribution. The phantom was imaged at five dose levels (CTDI vol : 1.0, 2.1, 3.0, 6.0, and 10.0 mGy) with 20 repeated scans at each dose, and images reconstructed with the same reconstruction algorithms. The local noise stationarity was assessed by generating spatial noise maps from the ensemble of repeated images and computing a noise inhomogeneity index, , following AAPM TG233 methods. All measurements were compared among the algorithms. Results Compared to FBP, noise magnitude was reduced on average (± one standard deviation) by 74 ± 6% and 68 ± 4% for ASiR‐V (at “100%” setting) and True Fidelity (at “High” setting), respectively. The noise texture from ASiR‐V had substantially lower noise frequency content with 55 ± 4% lower NPS f av compared to FBP while True Fidelity had only marginally different noise frequency content with 9 ± 5% lower NPS f av compared to FBP. Both ASiR‐V and True Fidelity demonstrated locally nonstationary noise in a lung texture background at all radiation dose levels, with higher noise near high‐contrast edges of vessels and lower noise in uniform regions. At the 1.0 mGy dose level values were 314% and 271% higher in ASiR‐V and True Fidelity compared to FBP, respectively. High‐contrast spatial resolution was similar between all algorithms for all dose levels and phantom sizes (<3% difference in TTF f 50% ). Compared to FBP, low‐contrast spatial resolution was lower for ASiR‐V and True Fidelity with a reduction of TTF f 50% of up to 42% and 36%, respectively. Conclusions The deep learning‐based CT reconstruction demonstrated a strong noise magnitude reduction compared to FBP while maintaining similar noise texture and high‐contrast spatial resolution. However, the algorithm resulted in images with a locally nonstationary noise in lung textured backgrounds and had somewhat degraded low‐contrast spatial resolution similar to what has been observed in currently available iterative reconstruction techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈尼妞妞122完成签到,获得积分10
刚刚
Radish完成签到 ,获得积分10
1秒前
1秒前
大胆遥发布了新的文献求助10
2秒前
义气珩发布了新的文献求助10
2秒前
Lxxx_7发布了新的文献求助10
2秒前
万能图书馆应助Ck采纳,获得10
3秒前
繁星与北斗完成签到,获得积分10
3秒前
脑洞疼应助sai采纳,获得10
3秒前
丘比特应助xiaoziyi666采纳,获得10
3秒前
wanci应助我行我素采纳,获得10
4秒前
marinemiao发布了新的文献求助10
4秒前
111完成签到 ,获得积分10
4秒前
无辜黑夜完成签到,获得积分10
5秒前
6秒前
今夜不设防完成签到,获得积分10
6秒前
李健应助木子采纳,获得10
7秒前
爆米花发布了新的文献求助10
7秒前
7秒前
7秒前
可靠的老鼠完成签到,获得积分10
8秒前
落寞依珊应助master-f采纳,获得10
8秒前
wbh发布了新的文献求助10
9秒前
田様应助hu970采纳,获得10
9秒前
科研通AI2S应助钟是一梦采纳,获得10
9秒前
zzz完成签到,获得积分20
10秒前
好玩和有趣完成签到,获得积分10
10秒前
脂蛋白抗原完成签到,获得积分10
10秒前
10秒前
10秒前
虫虫完成签到,获得积分10
10秒前
11秒前
11秒前
喜悦的向珊完成签到,获得积分10
11秒前
11秒前
科研狗发布了新的文献求助10
11秒前
清爽绿凝发布了新的文献求助10
11秒前
11秒前
大个应助佰斯特威采纳,获得10
12秒前
JingP完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740