Deep‐Learning‐Enabled Fast Optical Identification and Characterization of 2D Materials

材料科学 直觉 表征(材料科学) 鉴定(生物学) 深度学习 机器学习 人工智能 计算机科学 纳米技术 人工神经网络 植物 生物 认识论 哲学
作者
Bingnan Han,Yuxuan Lin,Yafang Yang,Nannan Mao,Wenyue Li,Haozhe Wang,Kenji Yasuda,Xirui Wang,Valla Fatemi,Lin Zhou,Joel I-Jan Wang,Qiong Ma,Yuan Cao,Daniel Rodan-Legrain,Ya‐Qing Bie,Efrén Navarro‐Moratalla,Dahlia Klein,David MacNeill,Sanfeng Wu,Hikari Kitadai,Xi Ling,Pablo Jarillo‐Herrero,Jing Kong,Jihao Yin,Tomás Palacios
出处
期刊:Advanced Materials [Wiley]
卷期号:32 (29) 被引量:75
标识
DOI:10.1002/adma.202000953
摘要

Abstract Advanced microscopy and/or spectroscopy tools play indispensable roles in nanoscience and nanotechnology research, as they provide rich information about material processes and properties. However, the interpretation of imaging data heavily relies on the “intuition” of experienced researchers. As a result, many of the deep graphical features obtained through these tools are often unused because of difficulties in processing the data and finding the correlations. Such challenges can be well addressed by deep learning. In this work, the optical characterization of 2D materials is used as a case study, and a neural‐network‐based algorithm is demonstrated for the material and thickness identification of 2D materials with high prediction accuracy and real‐time processing capability. Further analysis shows that the trained network can extract deep graphical features such as contrast, color, edges, shapes, flake sizes, and their distributions, based on which an ensemble approach is developed to predict the most relevant physical properties of 2D materials. Finally, a transfer learning technique is applied to adapt the pretrained network to other optical identification applications. This artificial‐intelligence‐based material characterization approach is a powerful tool that would speed up the preparation, initial characterization of 2D materials and other nanomaterials, and potentially accelerate new material discoveries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气的梦露完成签到,获得积分10
1秒前
绵绵球完成签到,获得积分10
1秒前
万能图书馆应助song采纳,获得10
1秒前
可爱的函函应助lilililili采纳,获得10
1秒前
3秒前
张八完成签到,获得积分10
5秒前
慕青应助老实的雪兰采纳,获得10
9秒前
Amikacin完成签到,获得积分10
10秒前
12秒前
12秒前
12秒前
14秒前
骆十八完成签到,获得积分10
15秒前
阿木木完成签到,获得积分10
15秒前
lancyab完成签到,获得积分10
15秒前
刘荣圣发布了新的文献求助10
16秒前
17秒前
撒啊发布了新的文献求助30
18秒前
雾黎颖发布了新的文献求助10
19秒前
科研木头人完成签到 ,获得积分10
19秒前
大个应助surain采纳,获得200
23秒前
wuliumu完成签到,获得积分10
24秒前
今后应助跳跃尔琴采纳,获得10
24秒前
莫羽倾尘完成签到,获得积分10
25秒前
物语完成签到 ,获得积分10
25秒前
lyp发布了新的文献求助30
26秒前
陈源完成签到 ,获得积分10
27秒前
雾黎颖完成签到,获得积分10
27秒前
大个应助wuliumu采纳,获得10
29秒前
30秒前
30秒前
彭于晏应助贤惠的正豪采纳,获得10
30秒前
泠风来完成签到,获得积分10
31秒前
钇铯完成签到,获得积分10
32秒前
yrh完成签到,获得积分20
37秒前
hengwang完成签到,获得积分10
39秒前
40秒前
40秒前
我是老大应助现代的健柏采纳,获得10
42秒前
ong发布了新的文献求助10
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143679
求助须知:如何正确求助?哪些是违规求助? 2795139
关于积分的说明 7813405
捐赠科研通 2451158
什么是DOI,文献DOI怎么找? 1304338
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601393