Near-field plume-surface interaction and regolith erosion and dispersal during the lunar landing

地质学 环境科学 撞击坑 登月 航空航天工程 风积作用 地球物理学 大气科学
作者
A. Rahimi,Omid Ejtehadi,Kyun Ho Lee,Rho-Shin Myong
出处
期刊:Acta Astronautica [Elsevier]
卷期号:175: 308-326 被引量:13
标识
DOI:10.1016/j.actaastro.2020.05.042
摘要

Abstract A rocket plume impinging on the lunar surface when a lunar lander approaches a landing site can cause significant dust dispersal. This study investigated the near-field rocket plume-lunar surface interaction and subsequent regolith erosion and particle dispersal. These subjects are challenging because of the complicated flow physics associated with the inherently multi-physics multi-scale problem, and the special lunar conditions, characterized by micro-gravity, near-vacuum, extreme dryness, and the unique properties of the regolith. Gas expansion into the near-vacuum lunar condition compared to exhaust gas under terrestrial circumstances varies not only in the shape of plume but also in the pressure profile on the surface. To understand the effect of surface erosion on flow characteristics, in conjunction with the finite volume method of plume impingement of a rocket nozzle, the Roberts erosion model was introduced for the influx mass flow rate of dust particles based on excess shear stress. The particulate phase was then handled in a Lagrangian framework using the discrete phase model. A parametric study on erosion rate was also conducted to examine the effect of particle density, particle diameter, Mach number, and hover altitude. Additionally, the maximum speed and inclined angle of the particles from the surface were computed for various particle diameters and hover altitudes. The resulting information about the pressure and heat flux distribution on lunar module components can be used for engineering design. Finally, high-fidelity simulations of particles eroded from the surface indicated that several scenarios may occur depending on particle diameters, grain-inclined angles from the surface, and hover altitudes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀书兰完成签到 ,获得积分10
刚刚
陆lu发布了新的文献求助20
1秒前
标致的文博完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
4秒前
5秒前
加油呀发布了新的文献求助30
6秒前
6秒前
科研通AI6应助王然采纳,获得10
7秒前
sdniuidifod完成签到,获得积分10
8秒前
cui发布了新的文献求助10
8秒前
风格化橙发布了新的文献求助10
8秒前
9秒前
www111完成签到,获得积分20
9秒前
myelin完成签到,获得积分10
9秒前
chengyida完成签到,获得积分10
10秒前
标致凝莲完成签到 ,获得积分10
11秒前
腼腆的南晴完成签到 ,获得积分10
11秒前
www111发布了新的文献求助10
11秒前
11秒前
田様应助LXJY采纳,获得10
12秒前
端庄的火龙果完成签到 ,获得积分10
12秒前
cui完成签到,获得积分10
13秒前
明研完成签到,获得积分10
13秒前
贪玩的秋柔应助简单不言采纳,获得10
14秒前
彭于晏应助awaibi采纳,获得10
14秒前
王小美发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
Elena完成签到 ,获得积分10
17秒前
17秒前
18秒前
隐形曼青应助kitiker采纳,获得10
18秒前
18秒前
思源应助霸气映之采纳,获得10
18秒前
18秒前
看不完的文献完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707