Near-field plume-surface interaction and regolith erosion and dispersal during the lunar landing

地质学 环境科学 撞击坑 登月 航空航天工程 风积作用 地球物理学 大气科学
作者
A. Rahimi,Omid Ejtehadi,Kyun Ho Lee,Rho-Shin Myong
出处
期刊:Acta Astronautica [Elsevier]
卷期号:175: 308-326 被引量:13
标识
DOI:10.1016/j.actaastro.2020.05.042
摘要

Abstract A rocket plume impinging on the lunar surface when a lunar lander approaches a landing site can cause significant dust dispersal. This study investigated the near-field rocket plume-lunar surface interaction and subsequent regolith erosion and particle dispersal. These subjects are challenging because of the complicated flow physics associated with the inherently multi-physics multi-scale problem, and the special lunar conditions, characterized by micro-gravity, near-vacuum, extreme dryness, and the unique properties of the regolith. Gas expansion into the near-vacuum lunar condition compared to exhaust gas under terrestrial circumstances varies not only in the shape of plume but also in the pressure profile on the surface. To understand the effect of surface erosion on flow characteristics, in conjunction with the finite volume method of plume impingement of a rocket nozzle, the Roberts erosion model was introduced for the influx mass flow rate of dust particles based on excess shear stress. The particulate phase was then handled in a Lagrangian framework using the discrete phase model. A parametric study on erosion rate was also conducted to examine the effect of particle density, particle diameter, Mach number, and hover altitude. Additionally, the maximum speed and inclined angle of the particles from the surface were computed for various particle diameters and hover altitudes. The resulting information about the pressure and heat flux distribution on lunar module components can be used for engineering design. Finally, high-fidelity simulations of particles eroded from the surface indicated that several scenarios may occur depending on particle diameters, grain-inclined angles from the surface, and hover altitudes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助受伤棉花糖采纳,获得10
刚刚
Daisy发布了新的文献求助10
刚刚
刚刚
简单的涵阳完成签到 ,获得积分10
刚刚
英俊的铭应助满锅采纳,获得10
刚刚
Wendy完成签到,获得积分10
刚刚
WN发布了新的文献求助10
1秒前
鲈鱼完成签到,获得积分10
1秒前
磨人的老妖精完成签到,获得积分10
2秒前
火火完成签到,获得积分10
2秒前
yy完成签到,获得积分10
2秒前
pyrene完成签到 ,获得积分10
3秒前
公冶菲鹰发布了新的文献求助10
3秒前
热热完成签到,获得积分10
3秒前
zzz完成签到 ,获得积分10
3秒前
Jared应助黎黎采纳,获得10
4秒前
4秒前
4秒前
斯文败类应助XXXXX采纳,获得10
4秒前
阿芜完成签到,获得积分10
5秒前
LV发布了新的文献求助10
5秒前
qiuxiali123发布了新的文献求助10
5秒前
5秒前
CodeCraft应助miao采纳,获得10
5秒前
5秒前
LSW完成签到 ,获得积分10
6秒前
顾矜应助IF采纳,获得30
7秒前
咸鱼咸完成签到,获得积分10
7秒前
Kauio发布了新的文献求助10
7秒前
幸运鹅47完成签到,获得积分10
7秒前
orixero应助niagvbjkhsdfvc采纳,获得10
7秒前
hanyahui完成签到,获得积分10
8秒前
eliot完成签到,获得积分10
8秒前
8秒前
Zhao_Kai发布了新的文献求助10
8秒前
爆米花应助而风不止采纳,获得10
8秒前
坚强的紫菜完成签到,获得积分10
8秒前
熊风发布了新的文献求助10
9秒前
核桃完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005