Patterns and driving factors of biomass carbon and soil organic carbon stock in the Indian Himalayan region.

碳纤维 总有机碳 生物量(生态学) 固碳 碳循环 碳储量 土壤有机质 温室气体 二氧化碳 土壤水分 环境化学 土壤呼吸
作者
Jitendra Ahirwal,Amitabha Nath,Biplab Brahma,Sourabh Deb,Uttam Kumar Sahoo,Arun Jyoti Nath
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:770: 145292-145292 被引量:12
标识
DOI:10.1016/j.scitotenv.2021.145292
摘要

Abstract Tree-based ecosystems are critical to climate change mitigation. The study analysed carbon (C) stock patterns and examined the importance of environmental variables in predicting carbon stock in biomass and soils of the Indian Himalayan Region (IHR). We conducted a synthesis of 100 studies reporting biomass carbon stock and 67 studies on soil organic carbon (SOC) stock from four land-uses: forests, plantation, agroforest, and herbaceous ecosystem from the IHR. Machine learning techniques were used to examine the importance of various environmental variables in predicting carbon stock in biomass and soils. Despite large variations in biomass C and SOC stock (mean ± SD) within the land-uses, natural forests have the highest biomass C stock (138.5 ± 87.3 Mg C ha−1), and plantation forests exhibited the highest SOC stock (168.8 ± 74.4 Mg C ha−1) in the top 1-m of soils. The relationship between the environmental variables (altitude, latitude, precipitation, and temperature) and carbon stock was not significantly correlated. The prediction of biomass carbon and SOC stock using different machine learning techniques (Adaboost, Bagging, Random Forest, and XGBoost) shows that the XGBoost model can predict the carbon stock for the IHR closely. Our study confirms that the carbon stock in the IHR vary on a large scale due to a diverse range of land-use and ecosystems within the region. Therefore, predicting the driver of carbon stock on a single environmental variable is impossible for the entire IHR. The IHR possesses a prominent carbon sink and biodiversity pool. Therefore, its protection is essential in fulfilling India's commitment to nationally determined contributions (NDC). Our data synthesis may also provide a baseline for the precise estimation of carbon stock, which will be vital for India's National Mission for Sustaining the Himalayan Ecosystem (NMSHE).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助Yohok采纳,获得30
刚刚
ohhhh驳回了Jun应助
刚刚
刚刚
1秒前
qq发布了新的文献求助10
2秒前
RUOXI发布了新的文献求助10
2秒前
Johnwick发布了新的文献求助10
2秒前
lgh发布了新的文献求助10
2秒前
上官若男应助木木采纳,获得30
3秒前
学子完成签到,获得积分10
4秒前
4秒前
我是老大应助zxy采纳,获得10
5秒前
5秒前
5秒前
优美寒梦完成签到,获得积分10
6秒前
缥缈的万声完成签到,获得积分10
6秒前
喵阿無发布了新的文献求助10
6秒前
7秒前
8秒前
英俊的铭应助魔幻的访云采纳,获得10
9秒前
heyfan完成签到 ,获得积分10
9秒前
9秒前
10秒前
xiaohaitao发布了新的文献求助10
11秒前
For_winter完成签到,获得积分10
11秒前
12秒前
14秒前
wanci应助zhouyu采纳,获得10
14秒前
奋斗雪曼完成签到,获得积分10
14秒前
以琳发布了新的文献求助10
14秒前
15秒前
15秒前
稳重镜子完成签到,获得积分10
15秒前
木木发布了新的文献求助10
15秒前
zjgjnu发布了新的文献求助10
15秒前
hjkl发布了新的文献求助10
16秒前
李健的粉丝团团长应助Atari采纳,获得100
16秒前
zxy发布了新的文献求助10
17秒前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
18秒前
18秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156829
求助须知:如何正确求助?哪些是违规求助? 2808171
关于积分的说明 7876754
捐赠科研通 2466574
什么是DOI,文献DOI怎么找? 1312950
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919