作者
Zhen Han,B Zhang,Gerrit Hoogenboom,Xiaolin Li,Chuan He
摘要
The agro-pastoral ecotone of Northwestern China (APENC) is one of the major agricultural production areas in China and a region where climate change is evident. Maize is a widely cultivated crop in the APENC, but the potential impact of climate change on maize, and potential adaptation strategies in response to this, are poorly understood. In this study, we used the Cropping System Model (CSM)-CERES-Maize to evaluate the impacts of climate change on maize yield, as well as the feasibility of 2 adaptation strategies; namely, adjusting the planting date and supplying irrigation. CSM-CERES-Maize was driven by an ensemble of 20 global climate models under 2 Representative Concentration Pathways (RCPs: RCP4.5 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). CSM-CERES-Maize performed well in simulating phenology, leaf area index (LAI), maize yield, and soil water dynamics. The results showed that irrigated maize yield would change by +3.9, -16.3, and -20.4% under the RCP4.5 scenario and +0.1, -31.2, and -53.1% under the RCP8.5 scenario in the 2030s, 2060s, and 2090s, respectively. Rainfed maize yield during the 2030s, 2060s, and 2090s would change by +21.7, +16.4, and +12.6% under the RCP4.5 scenario and +25.1, +4.8, and -12.3% under the RCP8.5 scenario, respectively. Evaluation of adaptation strategies suggests that delaying planting dates and supplying irrigation at the tasseling and grain filling stages are the best strategies to increase maize yield under climate change. These results will provide comprehensive information for local policymakers to combat the adverse impacts of climate change.