In situ mechanical testing of an Al matrix composite to investigate compressive plasticity and failure on multiple length scales

材料科学 复合材料 复合数 原位 极限抗拉强度 抗压强度 可塑性 基质(化学分析) 变形(气象学) 弹性模量 模数 数字图像相关 压缩(物理)
作者
Tianjiao Lei,Jenna L. Wardini,Olivia K. Donaldson,Timothy J. Rupert
出处
期刊:Journal of Materials Science [Springer Nature]
卷期号:56 (13): 8259-8275 被引量:1
标识
DOI:10.1007/s10853-021-05789-2
摘要

SiC particle reinforced Al matrix composites exhibit high strength, high wear resistance, and excellent high-temperature performance, but can also have low plasticity and fracture toughness, which limits their use in structural applications. This study investigates the plasticity and failure of such a composite on multiple length scales, from strain localization through a complex microstructure to the debonding of individual microparticles from the matrix. Three microscale pillars containing microstructures with different complexities and sizes/volume fraction of SiC particles were used to study the effect of these features on deformation. For the matrix, nanoscale intermetallic precipitates within the Al grains contribute most to the strengthening effect, and the Al grain boundaries are shown to be effective obstacles for preventing strain localization by dominant shear bands and, therefore, catastrophic failure. When shear localization occurs, SiC particles can then debond from the matrix if the shear band and interface are aligned. To investigate whether the interface is a weak point during catastrophic failure, a number of SiC particles were separated from the matrix with direct debonding tests, which yield an interface strength that is much higher than the critical resolved shear stress for a pillar exhibiting both shear localization and interface debonding. Therefore, the matrix–particle interface is ruled out as a possible weak point, and instead, shear localization is identified as the mechanism that can drive subsequent interface debonding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发嗲的戎完成签到 ,获得积分10
1秒前
1秒前
内向凌兰完成签到,获得积分10
1秒前
1秒前
zhappy完成签到,获得积分10
2秒前
satchzhao发布了新的文献求助10
2秒前
友好的妍完成签到 ,获得积分10
3秒前
香山叶正红完成签到 ,获得积分10
4秒前
TOM发布了新的文献求助10
4秒前
沙耶酱完成签到,获得积分10
4秒前
赢赢发布了新的文献求助10
5秒前
6秒前
尺素寸心完成签到,获得积分10
7秒前
8秒前
老实不尤完成签到,获得积分10
9秒前
CCL应助mammoth采纳,获得40
10秒前
11秒前
11秒前
12秒前
13秒前
盘尼西林给盘尼西林的求助进行了留言
13秒前
13秒前
香蕉觅云应助XXF采纳,获得10
13秒前
14秒前
大个应助招财不肥采纳,获得10
14秒前
xx发布了新的文献求助10
15秒前
joanna0932完成签到,获得积分10
15秒前
坚定亦竹完成签到,获得积分10
16秒前
mia完成签到,获得积分20
16秒前
16秒前
16秒前
CodeCraft应助zxx5012采纳,获得10
16秒前
18秒前
paparazzi221发布了新的文献求助10
18秒前
笑点低的大有完成签到 ,获得积分10
19秒前
孔小白发布了新的文献求助10
20秒前
20秒前
stephanie96发布了新的文献求助10
20秒前
Millie发布了新的文献求助10
21秒前
duxinyue应助sunzhiyu233采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808