A Hybrid Ensemble Model for Interval Prediction of Solar Power Output in Ship Onboard Power Systems

人工神经网络 粒子群优化 光伏系统 电力系统 极限学习机 功率(物理) 太阳能 区间(图论) 计算机科学 混合动力 工程类 人工智能 机器学习 电气工程 物理 组合数学 量子力学 数学
作者
Shuli Wen,Chi Zhang,Hai Lan,Yan Xu,Yi Tang,Yuqing Huang
出处
期刊:IEEE Transactions on Sustainable Energy [Institute of Electrical and Electronics Engineers]
卷期号:12 (1): 14-24 被引量:40
标识
DOI:10.1109/tste.2019.2963270
摘要

Application of solar energy into ship power systems has been increasingly drawing attention. Accordingly, an accurate prediction of solar power plays a significant role in the shipboard power system operation. However, a photovoltaic (PV) generation system on the shipboard, different from the one on land, has to suffer more dramatic power fluctuations caused by weather variations and motions of the ships, which increase the uncertainty of PV power outputs. This paper proposes a hybrid ensemble method for optimal interval prediction of onboard solar power based on a stochastic ship motion model. A set of machine learning techniques are combined together with the particle swarm optimization (PSO) to constitute a hybrid forecasting model, including a back propagation neural network (BPNN), a radial basis function neural network (RBFNN), an extreme learning machine (ELM) and an Elman neural network. Furthermore, for different learning algorithms, an ensemble strategy is employed to reduce the forecasting error and various environmental variables along with ship moving and rolling impacts are taken into account. The developed model has been practically tested on a power system on a large oil tanker penetrated with PV energy and the data along the typical navigation route from Dalian in China to Aden in Yemen are selected for solar power prediction. The simulation results demonstrate its high accuracy, which provides a reliable reference for ship power system operators to achieve a better energy management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助不安寒风采纳,获得10
刚刚
落海完成签到,获得积分10
刚刚
皮皮朱完成签到,获得积分10
刚刚
zjd发布了新的文献求助10
刚刚
大模型应助小瓶子采纳,获得10
1秒前
1秒前
机智向松完成签到,获得积分10
2秒前
Solar energy发布了新的文献求助10
2秒前
zygclwl发布了新的文献求助10
2秒前
典雅的静发布了新的文献求助10
2秒前
果实发布了新的文献求助10
2秒前
完美世界应助葛力采纳,获得10
3秒前
FCooSky发布了新的文献求助10
3秒前
Katsuya完成签到,获得积分10
3秒前
lyh2234完成签到 ,获得积分10
3秒前
遇上就这样吧应助云瑾采纳,获得10
4秒前
jacs111完成签到,获得积分10
4秒前
小聖完成签到 ,获得积分10
4秒前
misong完成签到,获得积分10
5秒前
精明的盼雁完成签到,获得积分10
6秒前
小糊涂仙儿完成签到 ,获得积分10
6秒前
6秒前
cc123完成签到,获得积分10
7秒前
英俊的胜完成签到,获得积分10
7秒前
Dan发布了新的文献求助100
7秒前
萝卜完成签到,获得积分10
8秒前
FLZLC发布了新的文献求助10
9秒前
鸢尾完成签到 ,获得积分10
9秒前
9秒前
9秒前
luw2018完成签到,获得积分20
10秒前
陈陈发布了新的文献求助10
10秒前
hyjhhy完成签到,获得积分10
11秒前
黑白完成签到,获得积分10
11秒前
ABBYTHU18完成签到,获得积分10
11秒前
Nicole完成签到 ,获得积分10
11秒前
woshidahunzi发布了新的文献求助10
11秒前
宋嘉新发布了新的文献求助10
12秒前
水的叶子66完成签到,获得积分10
12秒前
似水流年完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960377
求助须知:如何正确求助?哪些是违规求助? 3506460
关于积分的说明 11130713
捐赠科研通 3238673
什么是DOI,文献DOI怎么找? 1789847
邀请新用户注册赠送积分活动 871964
科研通“疑难数据库(出版商)”最低求助积分说明 803099