A Hybrid Ensemble Model for Interval Prediction of Solar Power Output in Ship Onboard Power Systems

人工神经网络 粒子群优化 光伏系统 电力系统 极限学习机 功率(物理) 太阳能 区间(图论) 计算机科学 混合动力 工程类 人工智能 机器学习 电气工程 物理 组合数学 量子力学 数学
作者
Shuli Wen,Chi Zhang,Hai Lan,Yan Xu,Yi Tang,Yuqing Huang
出处
期刊:IEEE Transactions on Sustainable Energy [Institute of Electrical and Electronics Engineers]
卷期号:12 (1): 14-24 被引量:40
标识
DOI:10.1109/tste.2019.2963270
摘要

Application of solar energy into ship power systems has been increasingly drawing attention. Accordingly, an accurate prediction of solar power plays a significant role in the shipboard power system operation. However, a photovoltaic (PV) generation system on the shipboard, different from the one on land, has to suffer more dramatic power fluctuations caused by weather variations and motions of the ships, which increase the uncertainty of PV power outputs. This paper proposes a hybrid ensemble method for optimal interval prediction of onboard solar power based on a stochastic ship motion model. A set of machine learning techniques are combined together with the particle swarm optimization (PSO) to constitute a hybrid forecasting model, including a back propagation neural network (BPNN), a radial basis function neural network (RBFNN), an extreme learning machine (ELM) and an Elman neural network. Furthermore, for different learning algorithms, an ensemble strategy is employed to reduce the forecasting error and various environmental variables along with ship moving and rolling impacts are taken into account. The developed model has been practically tested on a power system on a large oil tanker penetrated with PV energy and the data along the typical navigation route from Dalian in China to Aden in Yemen are selected for solar power prediction. The simulation results demonstrate its high accuracy, which provides a reliable reference for ship power system operators to achieve a better energy management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
传奇3应助洋芋土豆丝采纳,获得10
刚刚
1秒前
hxy完成签到,获得积分10
1秒前
识得故人发布了新的文献求助10
1秒前
S_pingan发布了新的文献求助10
2秒前
2秒前
陈晓迪1992发布了新的文献求助10
2秒前
3秒前
3秒前
张惠兰完成签到,获得积分10
3秒前
karmenda发布了新的文献求助10
3秒前
叶文洁发布了新的文献求助10
4秒前
Redamancy关注了科研通微信公众号
4秒前
清秀千兰发布了新的文献求助10
4秒前
4秒前
4秒前
茸茸茸发布了新的文献求助10
5秒前
5秒前
絵空事完成签到,获得积分10
5秒前
大模型应助辛勤秋柳采纳,获得10
6秒前
好好完成签到,获得积分20
6秒前
宝哥发布了新的文献求助10
7秒前
小新应助123lura采纳,获得10
7秒前
史晴雯发布了新的文献求助10
7秒前
7秒前
8秒前
粤123完成签到 ,获得积分10
8秒前
研友_LkVMe8完成签到,获得积分20
8秒前
9秒前
DONG发布了新的文献求助10
9秒前
bkagyin应助GC采纳,获得10
9秒前
changaipei发布了新的文献求助10
9秒前
Bai发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
氢氧化钠Li完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583573
求助须知:如何正确求助?哪些是违规求助? 4667363
关于积分的说明 14766995
捐赠科研通 4609622
什么是DOI,文献DOI怎么找? 2529351
邀请新用户注册赠送积分活动 1498473
关于科研通互助平台的介绍 1467170