A Hybrid Ensemble Model for Interval Prediction of Solar Power Output in Ship Onboard Power Systems

人工神经网络 粒子群优化 光伏系统 电力系统 极限学习机 功率(物理) 太阳能 区间(图论) 计算机科学 混合动力 工程类 人工智能 机器学习 电气工程 物理 组合数学 量子力学 数学
作者
Shuli Wen,Chi Zhang,Hai Lan,Yan Xu,Yi Tang,Yuqing Huang
出处
期刊:IEEE Transactions on Sustainable Energy [Institute of Electrical and Electronics Engineers]
卷期号:12 (1): 14-24 被引量:40
标识
DOI:10.1109/tste.2019.2963270
摘要

Application of solar energy into ship power systems has been increasingly drawing attention. Accordingly, an accurate prediction of solar power plays a significant role in the shipboard power system operation. However, a photovoltaic (PV) generation system on the shipboard, different from the one on land, has to suffer more dramatic power fluctuations caused by weather variations and motions of the ships, which increase the uncertainty of PV power outputs. This paper proposes a hybrid ensemble method for optimal interval prediction of onboard solar power based on a stochastic ship motion model. A set of machine learning techniques are combined together with the particle swarm optimization (PSO) to constitute a hybrid forecasting model, including a back propagation neural network (BPNN), a radial basis function neural network (RBFNN), an extreme learning machine (ELM) and an Elman neural network. Furthermore, for different learning algorithms, an ensemble strategy is employed to reduce the forecasting error and various environmental variables along with ship moving and rolling impacts are taken into account. The developed model has been practically tested on a power system on a large oil tanker penetrated with PV energy and the data along the typical navigation route from Dalian in China to Aden in Yemen are selected for solar power prediction. The simulation results demonstrate its high accuracy, which provides a reliable reference for ship power system operators to achieve a better energy management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DDDD发布了新的文献求助10
2秒前
陆程文完成签到,获得积分10
2秒前
2秒前
霞俊杰完成签到,获得积分20
3秒前
3秒前
3秒前
3秒前
Awei完成签到,获得积分10
3秒前
天天快乐应助牛贝贝采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
BowieHuang应助Ymir采纳,获得40
5秒前
5秒前
NexusExplorer应助1101592875采纳,获得10
5秒前
付研琪发布了新的文献求助10
5秒前
花灯王子完成签到,获得积分10
6秒前
Lqian_Yu完成签到 ,获得积分10
6秒前
小葛发布了新的文献求助10
6秒前
Kevin发布了新的文献求助20
7秒前
lzx完成签到,获得积分10
7秒前
ZIS发布了新的文献求助10
7秒前
吴帅发布了新的文献求助10
7秒前
7秒前
7秒前
keyanrubbish发布了新的文献求助10
7秒前
tangshijun完成签到,获得积分10
8秒前
8秒前
8秒前
子车茗应助sober采纳,获得20
8秒前
8秒前
无疾而终完成签到,获得积分10
8秒前
Tdj完成签到,获得积分10
8秒前
白苹果完成签到 ,获得积分10
9秒前
天行完成签到,获得积分10
9秒前
爆米花应助666采纳,获得10
9秒前
10秒前
potatozhou完成签到,获得积分10
10秒前
10秒前
Harssi发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836