A Hybrid Ensemble Model for Interval Prediction of Solar Power Output in Ship Onboard Power Systems

人工神经网络 粒子群优化 光伏系统 电力系统 极限学习机 功率(物理) 太阳能 区间(图论) 计算机科学 混合动力 工程类 人工智能 机器学习 电气工程 物理 组合数学 量子力学 数学
作者
Shuli Wen,Chi Zhang,Hai Lan,Yan Xu,Yi Tang,Yuqing Huang
出处
期刊:IEEE Transactions on Sustainable Energy [Institute of Electrical and Electronics Engineers]
卷期号:12 (1): 14-24 被引量:40
标识
DOI:10.1109/tste.2019.2963270
摘要

Application of solar energy into ship power systems has been increasingly drawing attention. Accordingly, an accurate prediction of solar power plays a significant role in the shipboard power system operation. However, a photovoltaic (PV) generation system on the shipboard, different from the one on land, has to suffer more dramatic power fluctuations caused by weather variations and motions of the ships, which increase the uncertainty of PV power outputs. This paper proposes a hybrid ensemble method for optimal interval prediction of onboard solar power based on a stochastic ship motion model. A set of machine learning techniques are combined together with the particle swarm optimization (PSO) to constitute a hybrid forecasting model, including a back propagation neural network (BPNN), a radial basis function neural network (RBFNN), an extreme learning machine (ELM) and an Elman neural network. Furthermore, for different learning algorithms, an ensemble strategy is employed to reduce the forecasting error and various environmental variables along with ship moving and rolling impacts are taken into account. The developed model has been practically tested on a power system on a large oil tanker penetrated with PV energy and the data along the typical navigation route from Dalian in China to Aden in Yemen are selected for solar power prediction. The simulation results demonstrate its high accuracy, which provides a reliable reference for ship power system operators to achieve a better energy management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
max完成签到,获得积分10
1秒前
sh完成签到,获得积分20
1秒前
风华正茂发布了新的文献求助30
1秒前
wwww发布了新的文献求助10
1秒前
科研陈完成签到,获得积分10
2秒前
4秒前
在水一方应助文艺过客采纳,获得10
4秒前
善良的背包完成签到,获得积分10
5秒前
wang发布了新的文献求助10
5秒前
oni完成签到,获得积分10
6秒前
酷波er应助qiqiqi采纳,获得10
6秒前
一白完成签到 ,获得积分10
6秒前
曾珍完成签到 ,获得积分10
7秒前
人生无处不青山完成签到,获得积分20
7秒前
乐乐应助一号采纳,获得10
8秒前
冯静完成签到,获得积分10
8秒前
NexusExplorer应助Leo000007采纳,获得10
9秒前
Evan发布了新的文献求助10
9秒前
Jasper应助daidai采纳,获得10
9秒前
乔an完成签到,获得积分10
9秒前
冷艳铁身完成签到 ,获得积分10
9秒前
小溪苏完成签到 ,获得积分10
10秒前
田様应助七七八八点半了采纳,获得10
10秒前
10秒前
华仔应助wwww采纳,获得10
10秒前
Bennyz完成签到,获得积分10
10秒前
11秒前
范同学完成签到,获得积分10
11秒前
wenwenzi完成签到,获得积分10
12秒前
求助人员应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
spc68应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
13秒前
CipherSage应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637298
求助须知:如何正确求助?哪些是违规求助? 4743192
关于积分的说明 14998742
捐赠科研通 4795599
什么是DOI,文献DOI怎么找? 2562070
邀请新用户注册赠送积分活动 1521546
关于科研通互助平台的介绍 1481548