A Hybrid Ensemble Model for Interval Prediction of Solar Power Output in Ship Onboard Power Systems

人工神经网络 粒子群优化 光伏系统 电力系统 极限学习机 功率(物理) 太阳能 区间(图论) 计算机科学 混合动力 工程类 人工智能 机器学习 电气工程 物理 组合数学 量子力学 数学
作者
Shuli Wen,Chi Zhang,Hai Lan,Yan Xu,Yi Tang,Yuqing Huang
出处
期刊:IEEE Transactions on Sustainable Energy [Institute of Electrical and Electronics Engineers]
卷期号:12 (1): 14-24 被引量:40
标识
DOI:10.1109/tste.2019.2963270
摘要

Application of solar energy into ship power systems has been increasingly drawing attention. Accordingly, an accurate prediction of solar power plays a significant role in the shipboard power system operation. However, a photovoltaic (PV) generation system on the shipboard, different from the one on land, has to suffer more dramatic power fluctuations caused by weather variations and motions of the ships, which increase the uncertainty of PV power outputs. This paper proposes a hybrid ensemble method for optimal interval prediction of onboard solar power based on a stochastic ship motion model. A set of machine learning techniques are combined together with the particle swarm optimization (PSO) to constitute a hybrid forecasting model, including a back propagation neural network (BPNN), a radial basis function neural network (RBFNN), an extreme learning machine (ELM) and an Elman neural network. Furthermore, for different learning algorithms, an ensemble strategy is employed to reduce the forecasting error and various environmental variables along with ship moving and rolling impacts are taken into account. The developed model has been practically tested on a power system on a large oil tanker penetrated with PV energy and the data along the typical navigation route from Dalian in China to Aden in Yemen are selected for solar power prediction. The simulation results demonstrate its high accuracy, which provides a reliable reference for ship power system operators to achieve a better energy management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
2秒前
2秒前
3秒前
Akitten完成签到,获得积分10
3秒前
星之所在应助guojingjing采纳,获得10
4秒前
刻苦的黑米完成签到,获得积分10
4秒前
英俊的铭应助lyp采纳,获得10
4秒前
善学以致用应助xh采纳,获得10
4秒前
失眠宫苴发布了新的文献求助10
5秒前
5秒前
研友_85YNe8完成签到,获得积分10
5秒前
yy发布了新的文献求助10
6秒前
8秒前
jery完成签到,获得积分10
8秒前
10秒前
zino完成签到,获得积分10
11秒前
12秒前
13秒前
Yoyo完成签到 ,获得积分10
13秒前
开心的傲蕾完成签到,获得积分10
13秒前
xfxx完成签到,获得积分10
13秒前
李健的粉丝团团长应助zyy采纳,获得10
14秒前
JamesPei应助安静的半蕾采纳,获得10
15秒前
华仔应助粱夏烟采纳,获得10
15秒前
15秒前
SHAO发布了新的文献求助10
16秒前
16秒前
lyp发布了新的文献求助10
16秒前
王五一完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
19秒前
酷波er应助紧张的惜梦采纳,获得10
20秒前
波谷发布了新的文献求助10
20秒前
20秒前
Dr_JennyZ完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642142
求助须知:如何正确求助?哪些是违规求助? 4758300
关于积分的说明 15016687
捐赠科研通 4800688
什么是DOI,文献DOI怎么找? 2566186
邀请新用户注册赠送积分活动 1524265
关于科研通互助平台的介绍 1483901