多重耐药
组织蛋白酶B
过继性细胞移植
抗菌剂
败血症
免疫系统
化学
免疫学
抗生素
生物
微生物学
生物化学
T细胞
酶
作者
Xucheng Hou,Xinfu Zhang,Weiyu Zhao,Chunxi Zeng,Binbin Deng,David W. McComb,Shi Du,Chengxiang Zhang,Wenqing Li,Yizhou Dong
标识
DOI:10.1038/s41565-019-0600-1
摘要
Sepsis, a condition caused by severe infections, affects more than 30 million people worldwide every year and remains the leading cause of death in hospitals1,2. Moreover, antimicrobial resistance has become an additional challenge in the treatment of sepsis3, and thus, alternative therapeutic approaches are urgently needed2,3. Here, we show that adoptive transfer of macrophages containing antimicrobial peptides linked to cathepsin B in the lysosomes (MACs) can be applied for the treatment of multidrug-resistant bacteria-induced sepsis in mice with immunosuppression. The MACs are constructed by transfection of vitamin C lipid nanoparticles that deliver antimicrobial peptide and cathepsin B (AMP-CatB) mRNA. The vitamin C lipid nanoparticles allow the specific accumulation of AMP-CatB in macrophage lysosomes, which is the key location for bactericidal activities. Our results demonstrate that adoptive MAC transfer leads to the elimination of multidrug-resistant bacteria, including Staphylococcus aureus and Escherichia coli, leading to the complete recovery of immunocompromised septic mice. Our work provides an alternative strategy for overcoming multidrug-resistant bacteria-induced sepsis and opens up possibilities for the development of nanoparticle-enabled cell therapy for infectious diseases. Adoptive transfer of macrophages, transfected with vitamin C lipid nanoparticles that deliver an antimicrobial peptide and cathepsin B mRNA, can be applied for the treatment of multidrug-resistant bacteria-induced sepsis in mice.
科研通智能强力驱动
Strongly Powered by AbleSci AI