Understanding the difficulty of training deep feedforward neural networks

初始化 计算机科学 人工神经网络 人工智能 深层神经网络 深度学习 梯度下降 雅可比矩阵与行列式 乙状窦函数 机器学习 数学 应用数学 程序设计语言
作者
Xavier Glorot,Yoshua Bengio
摘要

Whereas before 2006 it appears that deep multilayer neural networks were not successfully trained, since then several algorithms have been shown to successfully train them, with experimental results showing the superiority of deeper vs less deep architectures. All these experimental results were obtained with new initialization or training mechanisms. Our objective here is to understand better why standard gradient descent from random initialization is doing so poorly with deep neural networks, to better understand these recent relative successes and help design better algorithms in the future. We first observe the influence of the non-linear activations functions. We find that the logistic sigmoid activation is unsuited for deep networks with random initialization because of its mean value, which can drive especially the top hidden layer into saturation. Surprisingly, we find that saturated units can move out of saturation by themselves, albeit slowly, and explaining the plateaus sometimes seen when training neural networks. We find that a new non-linearity that saturates less can often be beneficial. Finally, we study how activations and gradients vary across layers and during training, with the idea that training may be more difficult when the singular values of the Jacobian associated with each layer are far from 1. Based on these considerations, we propose a new initialization scheme that brings substantially faster convergence. 1 Deep Neural Networks Deep learning methods aim at learning feature hierarchies with features from higher levels of the hierarchy formed by the composition of lower level features. They include Appearing in Proceedings of the 13 International Conference on Artificial Intelligence and Statistics (AISTATS) 2010, Chia Laguna Resort, Sardinia, Italy. Volume 9 of JMLR: WC Weston et al., 2008). Much attention has recently been devoted to them (see (Bengio, 2009) for a review), because of their theoretical appeal, inspiration from biology and human cognition, and because of empirical success in vision (Ranzato et al., 2007; Larochelle et al., 2007; Vincent et al., 2008) and natural language processing (NLP) (Collobert & Weston, 2008; Mnih & Hinton, 2009). Theoretical results reviewed and discussed by Bengio (2009), suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Most of the recent experimental results with deep architecture are obtained with models that can be turned into deep supervised neural networks, but with initialization or training schemes different from the classical feedforward neural networks (Rumelhart et al., 1986). Why are these new algorithms working so much better than the standard random initialization and gradient-based optimization of a supervised training criterion? Part of the answer may be found in recent analyses of the effect of unsupervised pretraining (Erhan et al., 2009), showing that it acts as a regularizer that initializes the parameters in a “better” basin of attraction of the optimization procedure, corresponding to an apparent local minimum associated with better generalization. But earlier work (Bengio et al., 2007) had shown that even a purely supervised but greedy layer-wise procedure would give better results. So here instead of focusing on what unsupervised pre-training or semi-supervised criteria bring to deep architectures, we focus on analyzing what may be going wrong with good old (but deep) multilayer neural networks. Our analysis is driven by investigative experiments to monitor activations (watching for saturation of hidden units) and gradients, across layers and across training iterations. We also evaluate the effects on these of choices of activation function (with the idea that it might affect saturation) and initialization procedure (since unsupervised pretraining is a particular form of initialization and it has a drastic impact).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戚薇发布了新的文献求助20
1秒前
1秒前
爱莉希雅发布了新的文献求助10
1秒前
乌冬面发布了新的文献求助10
1秒前
星辰大海应助江大橘采纳,获得10
1秒前
2秒前
2秒前
科研通AI5应助超级凡桃采纳,获得10
2秒前
林123a发布了新的文献求助10
3秒前
好运接收集成器完成签到,获得积分10
4秒前
反方向的钟完成签到,获得积分10
4秒前
4秒前
个性的紫菜应助wangking采纳,获得30
4秒前
wjh完成签到,获得积分10
4秒前
Xinwen0322发布了新的文献求助10
4秒前
顾矜应助MaChent采纳,获得10
5秒前
5秒前
Zymiao发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
M1982完成签到,获得积分20
6秒前
彩色耳机发布了新的文献求助10
7秒前
传奇3应助爱莉希雅采纳,获得10
7秒前
7秒前
一期一会完成签到,获得积分10
8秒前
陈军发布了新的文献求助10
8秒前
8秒前
8R60d8应助11111111111111采纳,获得20
8秒前
量子星尘发布了新的文献求助10
8秒前
飞飞发布了新的文献求助10
8秒前
9秒前
shenzhou9发布了新的文献求助10
9秒前
9秒前
个性的紫菜应助戚薇采纳,获得20
9秒前
乌冬面完成签到,获得积分10
9秒前
LULU酱完成签到 ,获得积分10
10秒前
花生完成签到 ,获得积分10
10秒前
10秒前
林123a完成签到,获得积分10
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646