吸附
层状双氢氧化物
氢氧化物
插层(化学)
甲基橙
离子交换
煤
化学
无机化学
化学工程
氢键
离子
催化作用
分子
有机化学
工程类
光催化
作者
Wei Liu,Jianhua Yang,Jiajia Cai,Haijin Li,Yue Zhao,Xiaolong Deng,Yi Liu,Keke Mao,Meng Guo,Yong Zhou
标识
DOI:10.1080/09593330.2022.2049888
摘要
In order to investigate the effect of the types of interlayer anions on the adsorption performance of LDHs, herein, we synthesized three cobalt-aluminum layered double hydroxides (CoAl-LDHs) with different interlayer anions (NO3-/Cl-/CO32-). The experimental results demonstrate that the CoAl-LDH (Cl-) exhibited high adsorption capacity of 1372.1 mg/g at room temperature and the fastest adsorption rate on methyl orange (MO), mainly attributed to the excellent ion exchange capacity and high specific surface area and pore volume. Furthermore, the ion exchange driven by electrostatic interaction, hydrogen bonding, and surface complexation might be the main mechanisms for MO adsorption on CoAl-LDH (Cl-) and CoAl-LDH (NO3-). However, the MO adsorption on CoAl-LDH (CO32-) was strongly pH-dependent and the optimal pH value was about 3.5. Additionally, the supramolecular structure of CoAl-LDHs-MO was formed through electrostatic interaction, hydrogen bonding, and surface complexation between the host hydroxide layers and the guest MO- after adsorption equilibrium. An in-depth understanding of the differences in the adsorption performance of three anion-intercalated CoAl-LDHs will provide opportunities for further improvement of the adsorption capacity and exhibit a bright future for the design and optimization of efficient nano-adsorbents shortly.
科研通智能强力驱动
Strongly Powered by AbleSci AI