Machine learning based data driven inkjet printed electronics: jetting prediction for novel inks

均方误差 下降(电信) 计算机科学 机器学习 墨水池 人工智能 模拟 工程类 数学 机械工程 统计 语音识别
作者
Fahmida Pervin Brishty,Ruth Urner,Gerd Grau
出处
期刊:Flexible and printed electronics [IOP Publishing]
卷期号:7 (1): 015009-015009 被引量:23
标识
DOI:10.1088/2058-8585/ac5a39
摘要

Abstract Machine learning (ML) as a predictive methodology can potentially reduce the configuration cost and workload of inkjet printing. Inkjet printing has many advantages for additive manufacturing and printed electronics including low cost, scalability, non-contact printing and on-demand customization. Inkjet generates droplets with a piezoelectric dispenser controlled through frequency, voltage pulse and timing parameters. A major challenge is the design of jettable inks and the rapid optimization of stable jetting conditions whilst preventing common problems (no ejection, perturbation, satellite drop, multiple drops, drop breaking, nozzle clogging). Material consuming trial and error experiments are replaced here with a ML based jetting window. A dataset of machine and material properties is created from literature and experimental data. After exploratory data analysis and feature identification, various (linear and non-linear) regression models are compared in detail. The models are trained on 80% of the data and root mean square error (RMSE) is calculated on 20% test data. Simple polynomial relationships between the input and output features yield coarse prediction. Instead, small ensembles of decision trees (DTs) (boosted DTs and random forests) have improved predictive power for drop velocity and radius with RMSE of 0.39 m s −1 and 2.21 µ m respectively. The mean absolute percentage error is 3.87%. The models are validated with experimentally collected data for a novel ink where no data points with this ink were included in the training set. Additionally, several classification algorithms are utilized to categorize ink and printer parameters by jetting regime (‘single drop’, ‘multiple drops’, ‘no ejection’). Categorization and regression models are combined to improve overall model prediction. This article demonstrates that ML can be used to predict ink jetting behavior from 11 different ink and printing parameters. Different algorithms are analyzed and the optimal combination of algorithms is identified. It is shown that experimental and literature data can be combined and an initial dataset is created that other reserachers can build on in the future. ML enables efficient material and printing parameter selection speeding up the development of novel ink materials for printed electronics by eliminating jetting experiments that are money, time and material intensive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
melody完成签到,获得积分10
3秒前
CipherSage应助研友_ngKyqn采纳,获得10
3秒前
鲤角兽完成签到,获得积分10
3秒前
研友_n0kYwL发布了新的文献求助10
4秒前
cc发布了新的文献求助10
5秒前
起床做核酸完成签到,获得积分10
6秒前
Handsome发布了新的文献求助10
6秒前
niu完成签到,获得积分20
12秒前
香蕉觅云应助halogen采纳,获得10
12秒前
12秒前
12秒前
Kikua发布了新的文献求助10
12秒前
陶征应助Handsome采纳,获得10
12秒前
916应助海藻糖采纳,获得10
13秒前
SYLH应助海藻糖采纳,获得30
13秒前
13秒前
再也不拖发布了新的文献求助10
17秒前
orixero应助泡泡糖采纳,获得10
17秒前
两句话完成签到 ,获得积分10
17秒前
18秒前
Jeffery426发布了新的文献求助10
18秒前
大个应助cc采纳,获得10
19秒前
19秒前
玛卡巴卡完成签到 ,获得积分10
20秒前
20秒前
传奇3应助高高采纳,获得10
21秒前
某博完成签到 ,获得积分10
22秒前
zoe发布了新的文献求助10
23秒前
weist完成签到,获得积分10
23秒前
ZZ发布了新的文献求助10
24秒前
25秒前
25秒前
26秒前
halogen完成签到,获得积分10
26秒前
请和我吃饭完成签到,获得积分10
28秒前
anyilin完成签到,获得积分10
28秒前
脑洞疼应助傻子采纳,获得10
28秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979693
求助须知:如何正确求助?哪些是违规求助? 3523666
关于积分的说明 11218291
捐赠科研通 3261174
什么是DOI,文献DOI怎么找? 1800485
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167