Machine learning based data driven inkjet printed electronics: jetting prediction for novel inks

均方误差 下降(电信) 计算机科学 机器学习 墨水池 人工智能 模拟 工程类 数学 机械工程 统计 语音识别
作者
Fahmida Pervin Brishty,Ruth Urner,Gerd Grau
出处
期刊:Flexible and printed electronics [IOP Publishing]
卷期号:7 (1): 015009-015009 被引量:23
标识
DOI:10.1088/2058-8585/ac5a39
摘要

Abstract Machine learning (ML) as a predictive methodology can potentially reduce the configuration cost and workload of inkjet printing. Inkjet printing has many advantages for additive manufacturing and printed electronics including low cost, scalability, non-contact printing and on-demand customization. Inkjet generates droplets with a piezoelectric dispenser controlled through frequency, voltage pulse and timing parameters. A major challenge is the design of jettable inks and the rapid optimization of stable jetting conditions whilst preventing common problems (no ejection, perturbation, satellite drop, multiple drops, drop breaking, nozzle clogging). Material consuming trial and error experiments are replaced here with a ML based jetting window. A dataset of machine and material properties is created from literature and experimental data. After exploratory data analysis and feature identification, various (linear and non-linear) regression models are compared in detail. The models are trained on 80% of the data and root mean square error (RMSE) is calculated on 20% test data. Simple polynomial relationships between the input and output features yield coarse prediction. Instead, small ensembles of decision trees (DTs) (boosted DTs and random forests) have improved predictive power for drop velocity and radius with RMSE of 0.39 m s −1 and 2.21 µ m respectively. The mean absolute percentage error is 3.87%. The models are validated with experimentally collected data for a novel ink where no data points with this ink were included in the training set. Additionally, several classification algorithms are utilized to categorize ink and printer parameters by jetting regime (‘single drop’, ‘multiple drops’, ‘no ejection’). Categorization and regression models are combined to improve overall model prediction. This article demonstrates that ML can be used to predict ink jetting behavior from 11 different ink and printing parameters. Different algorithms are analyzed and the optimal combination of algorithms is identified. It is shown that experimental and literature data can be combined and an initial dataset is created that other reserachers can build on in the future. ML enables efficient material and printing parameter selection speeding up the development of novel ink materials for printed electronics by eliminating jetting experiments that are money, time and material intensive.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
竟何完成签到,获得积分10
刚刚
1秒前
nana完成签到,获得积分10
2秒前
浮游应助WYX采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
5秒前
微米完成签到,获得积分10
6秒前
7秒前
7秒前
Orange应助zhuxu采纳,获得10
9秒前
小遇完成签到 ,获得积分10
9秒前
悠悠发布了新的文献求助10
10秒前
MMMV完成签到,获得积分10
11秒前
14秒前
小蘑菇应助高挑的迎夏采纳,获得10
14秒前
tannie完成签到 ,获得积分0
15秒前
隐形珊完成签到,获得积分10
17秒前
希望天下0贩的0应助niniyiya采纳,获得10
17秒前
18秒前
18秒前
19秒前
Orange应助圈圈采纳,获得10
21秒前
aa完成签到,获得积分10
22秒前
愉快若剑发布了新的文献求助10
23秒前
Godlove发布了新的文献求助10
23秒前
kkk发布了新的文献求助10
24秒前
26秒前
酷波er应助方法采纳,获得10
27秒前
28秒前
Godlove完成签到,获得积分10
29秒前
29秒前
打打应助kkk采纳,获得10
30秒前
Jared应助小鱼头采纳,获得10
31秒前
32秒前
飞快的孱完成签到,获得积分10
34秒前
李爱国应助慕木采纳,获得10
34秒前
fengfeng发布了新的文献求助10
35秒前
psg完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
36秒前
浮游应助求神拜佛采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633720
求助须知:如何正确求助?哪些是违规求助? 4729357
关于积分的说明 14986552
捐赠科研通 4791560
什么是DOI,文献DOI怎么找? 2558957
邀请新用户注册赠送积分活动 1519405
关于科研通互助平台的介绍 1479650