已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning based data driven inkjet printed electronics: jetting prediction for novel inks

均方误差 下降(电信) 计算机科学 机器学习 墨水池 人工智能 模拟 工程类 数学 机械工程 统计 语音识别
作者
Fahmida Pervin Brishty,Ruth Urner,Gerd Grau
出处
期刊:Flexible and printed electronics [IOP Publishing]
卷期号:7 (1): 015009-015009 被引量:23
标识
DOI:10.1088/2058-8585/ac5a39
摘要

Abstract Machine learning (ML) as a predictive methodology can potentially reduce the configuration cost and workload of inkjet printing. Inkjet printing has many advantages for additive manufacturing and printed electronics including low cost, scalability, non-contact printing and on-demand customization. Inkjet generates droplets with a piezoelectric dispenser controlled through frequency, voltage pulse and timing parameters. A major challenge is the design of jettable inks and the rapid optimization of stable jetting conditions whilst preventing common problems (no ejection, perturbation, satellite drop, multiple drops, drop breaking, nozzle clogging). Material consuming trial and error experiments are replaced here with a ML based jetting window. A dataset of machine and material properties is created from literature and experimental data. After exploratory data analysis and feature identification, various (linear and non-linear) regression models are compared in detail. The models are trained on 80% of the data and root mean square error (RMSE) is calculated on 20% test data. Simple polynomial relationships between the input and output features yield coarse prediction. Instead, small ensembles of decision trees (DTs) (boosted DTs and random forests) have improved predictive power for drop velocity and radius with RMSE of 0.39 m s −1 and 2.21 µ m respectively. The mean absolute percentage error is 3.87%. The models are validated with experimentally collected data for a novel ink where no data points with this ink were included in the training set. Additionally, several classification algorithms are utilized to categorize ink and printer parameters by jetting regime (‘single drop’, ‘multiple drops’, ‘no ejection’). Categorization and regression models are combined to improve overall model prediction. This article demonstrates that ML can be used to predict ink jetting behavior from 11 different ink and printing parameters. Different algorithms are analyzed and the optimal combination of algorithms is identified. It is shown that experimental and literature data can be combined and an initial dataset is created that other reserachers can build on in the future. ML enables efficient material and printing parameter selection speeding up the development of novel ink materials for printed electronics by eliminating jetting experiments that are money, time and material intensive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
益生菌小哥关注了科研通微信公众号
刚刚
洋yang关注了科研通微信公众号
1秒前
2秒前
失眠傲芙发布了新的文献求助10
2秒前
1111发布了新的文献求助10
2秒前
香蕉觅云应助幸运小冲鸭采纳,获得30
3秒前
fang完成签到 ,获得积分10
6秒前
7秒前
刘小源完成签到 ,获得积分10
10秒前
衍夏关注了科研通微信公众号
10秒前
10秒前
司马立果发布了新的文献求助10
12秒前
英姑应助羊水彤采纳,获得100
12秒前
碧蓝笑槐完成签到,获得积分10
13秒前
麦兜完成签到,获得积分10
13秒前
刻苦的砖头完成签到 ,获得积分10
14秒前
hjmx发布了新的文献求助10
15秒前
阳阳阳完成签到,获得积分10
17秒前
19秒前
笨笨的凡梅完成签到,获得积分10
19秒前
染染完成签到,获得积分10
20秒前
tj完成签到,获得积分10
22秒前
22秒前
阳阳阳发布了新的文献求助10
23秒前
思源应助终陌采纳,获得10
23秒前
25秒前
zhangDL发布了新的文献求助10
25秒前
ding应助只要两毛九采纳,获得30
26秒前
28秒前
Yuiv发布了新的文献求助10
31秒前
32秒前
Jasper应助科研通管家采纳,获得10
32秒前
香蕉觅云应助科研通管家采纳,获得10
32秒前
彭于晏应助科研通管家采纳,获得10
32秒前
李爱国应助科研通管家采纳,获得10
32秒前
小果子应助科研通管家采纳,获得10
33秒前
SciGPT应助科研通管家采纳,获得10
33秒前
充电宝应助科研通管家采纳,获得10
33秒前
科目三应助科研通管家采纳,获得10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252704
求助须知:如何正确求助?哪些是违规求助? 4416333
关于积分的说明 13749452
捐赠科研通 4288358
什么是DOI,文献DOI怎么找? 2352895
邀请新用户注册赠送积分活动 1349738
关于科研通互助平台的介绍 1309271