Machine learning based data driven inkjet printed electronics: jetting prediction for novel inks

均方误差 下降(电信) 计算机科学 机器学习 墨水池 人工智能 模拟 工程类 数学 机械工程 统计 语音识别
作者
Fahmida Pervin Brishty,Ruth Urner,Gerd Grau
出处
期刊:Flexible and printed electronics [IOP Publishing]
卷期号:7 (1): 015009-015009 被引量:23
标识
DOI:10.1088/2058-8585/ac5a39
摘要

Abstract Machine learning (ML) as a predictive methodology can potentially reduce the configuration cost and workload of inkjet printing. Inkjet printing has many advantages for additive manufacturing and printed electronics including low cost, scalability, non-contact printing and on-demand customization. Inkjet generates droplets with a piezoelectric dispenser controlled through frequency, voltage pulse and timing parameters. A major challenge is the design of jettable inks and the rapid optimization of stable jetting conditions whilst preventing common problems (no ejection, perturbation, satellite drop, multiple drops, drop breaking, nozzle clogging). Material consuming trial and error experiments are replaced here with a ML based jetting window. A dataset of machine and material properties is created from literature and experimental data. After exploratory data analysis and feature identification, various (linear and non-linear) regression models are compared in detail. The models are trained on 80% of the data and root mean square error (RMSE) is calculated on 20% test data. Simple polynomial relationships between the input and output features yield coarse prediction. Instead, small ensembles of decision trees (DTs) (boosted DTs and random forests) have improved predictive power for drop velocity and radius with RMSE of 0.39 m s −1 and 2.21 µ m respectively. The mean absolute percentage error is 3.87%. The models are validated with experimentally collected data for a novel ink where no data points with this ink were included in the training set. Additionally, several classification algorithms are utilized to categorize ink and printer parameters by jetting regime (‘single drop’, ‘multiple drops’, ‘no ejection’). Categorization and regression models are combined to improve overall model prediction. This article demonstrates that ML can be used to predict ink jetting behavior from 11 different ink and printing parameters. Different algorithms are analyzed and the optimal combination of algorithms is identified. It is shown that experimental and literature data can be combined and an initial dataset is created that other reserachers can build on in the future. ML enables efficient material and printing parameter selection speeding up the development of novel ink materials for printed electronics by eliminating jetting experiments that are money, time and material intensive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
CipherSage应助kkk采纳,获得10
2秒前
yar应助junio采纳,获得10
3秒前
左丘傲菡发布了新的文献求助10
4秒前
lq102021完成签到,获得积分10
4秒前
李健应助重要的夕阳采纳,获得10
4秒前
5秒前
orixero应助mm采纳,获得10
6秒前
8秒前
orixero应助lan采纳,获得10
8秒前
陈陈发布了新的文献求助10
8秒前
XD824发布了新的文献求助10
9秒前
顺心的梨愁完成签到 ,获得积分10
10秒前
寄草完成签到,获得积分10
11秒前
kkk完成签到,获得积分20
12秒前
13秒前
13秒前
博修发布了新的文献求助10
14秒前
花花草草完成签到,获得积分10
15秒前
yun完成签到,获得积分10
15秒前
qqq完成签到,获得积分10
16秒前
小小完成签到,获得积分10
17秒前
17秒前
程潇是我女神完成签到 ,获得积分10
18秒前
柒柒完成签到,获得积分10
18秒前
18秒前
Orange应助博修采纳,获得10
20秒前
zho发布了新的文献求助10
21秒前
xiaoxiang_1001完成签到,获得积分10
21秒前
萨科发布了新的文献求助10
21秒前
鸡鱼蚝发布了新的文献求助10
22秒前
舒适可乐完成签到,获得积分10
22秒前
赛因斯完成签到,获得积分10
24秒前
NexusExplorer应助ww采纳,获得10
25秒前
25秒前
香蕉觅云应助宋宋采纳,获得10
26秒前
27秒前
28秒前
28秒前
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299813
求助须知:如何正确求助?哪些是违规求助? 2934662
关于积分的说明 8470165
捐赠科研通 2608229
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574