Machine learning based data driven inkjet printed electronics: jetting prediction for novel inks

均方误差 下降(电信) 计算机科学 机器学习 墨水池 人工智能 模拟 工程类 数学 机械工程 统计 语音识别
作者
Fahmida Pervin Brishty,Ruth Urner,Gerd Grau
出处
期刊:Flexible and printed electronics [IOP Publishing]
卷期号:7 (1): 015009-015009 被引量:23
标识
DOI:10.1088/2058-8585/ac5a39
摘要

Abstract Machine learning (ML) as a predictive methodology can potentially reduce the configuration cost and workload of inkjet printing. Inkjet printing has many advantages for additive manufacturing and printed electronics including low cost, scalability, non-contact printing and on-demand customization. Inkjet generates droplets with a piezoelectric dispenser controlled through frequency, voltage pulse and timing parameters. A major challenge is the design of jettable inks and the rapid optimization of stable jetting conditions whilst preventing common problems (no ejection, perturbation, satellite drop, multiple drops, drop breaking, nozzle clogging). Material consuming trial and error experiments are replaced here with a ML based jetting window. A dataset of machine and material properties is created from literature and experimental data. After exploratory data analysis and feature identification, various (linear and non-linear) regression models are compared in detail. The models are trained on 80% of the data and root mean square error (RMSE) is calculated on 20% test data. Simple polynomial relationships between the input and output features yield coarse prediction. Instead, small ensembles of decision trees (DTs) (boosted DTs and random forests) have improved predictive power for drop velocity and radius with RMSE of 0.39 m s −1 and 2.21 µ m respectively. The mean absolute percentage error is 3.87%. The models are validated with experimentally collected data for a novel ink where no data points with this ink were included in the training set. Additionally, several classification algorithms are utilized to categorize ink and printer parameters by jetting regime (‘single drop’, ‘multiple drops’, ‘no ejection’). Categorization and regression models are combined to improve overall model prediction. This article demonstrates that ML can be used to predict ink jetting behavior from 11 different ink and printing parameters. Different algorithms are analyzed and the optimal combination of algorithms is identified. It is shown that experimental and literature data can be combined and an initial dataset is created that other reserachers can build on in the future. ML enables efficient material and printing parameter selection speeding up the development of novel ink materials for printed electronics by eliminating jetting experiments that are money, time and material intensive.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助baiyang99采纳,获得10
刚刚
Giggle完成签到,获得积分10
3秒前
陈晨发布了新的文献求助10
4秒前
天天快乐应助粗心的善若采纳,获得10
4秒前
5秒前
超级感谢大佬滴帮助完成签到,获得积分10
6秒前
9秒前
光能使者完成签到,获得积分10
10秒前
11秒前
12秒前
qiuli完成签到,获得积分10
12秒前
16秒前
冂xx易云完成签到,获得积分10
18秒前
嬴政飞发布了新的文献求助10
18秒前
苏苏完成签到,获得积分10
19秒前
19秒前
lpk完成签到,获得积分10
19秒前
科研通AI6应助guyutang采纳,获得20
20秒前
20秒前
22秒前
qiuli发布了新的文献求助10
23秒前
24秒前
hh完成签到,获得积分20
24秒前
儒雅的蜜粉完成签到,获得积分10
25秒前
shufessm完成签到,获得积分0
26秒前
寇博翔发布了新的文献求助10
27秒前
hh发布了新的文献求助10
27秒前
寻绿完成签到,获得积分10
28秒前
cora完成签到 ,获得积分10
33秒前
万能图书馆应助海蓝博采纳,获得10
35秒前
36秒前
lpk发布了新的文献求助10
36秒前
41秒前
42秒前
43秒前
豪哥发布了新的文献求助10
43秒前
褪色完成签到,获得积分10
43秒前
xiaoyu完成签到,获得积分10
43秒前
43秒前
ljy发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563681
求助须知:如何正确求助?哪些是违规求助? 4648553
关于积分的说明 14685532
捐赠科研通 4590511
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491204
关于科研通互助平台的介绍 1462478