Intelligent fault diagnosis scheme via multi-module supervised-learning network with essential features capture-regulation strategy

反褶积 分类器(UML) 计算机科学 脉冲(物理) 人工智能 模式识别(心理学) 数据挖掘 提取器 机器学习 工程类 算法 工艺工程 量子力学 物理
作者
Yuanhong Chang,Qiang Chen,Jinglong Chen,Shuilong He,Fudong Li,Zitong Zhou
出处
期刊:Isa Transactions [Elsevier]
卷期号:129: 459-475 被引量:4
标识
DOI:10.1016/j.isatra.2022.02.038
摘要

The performance of data driven-based intelligent diagnosis method greatly depends on the quantity and quality of data. Nevertheless, due to realistic limitations, failure data is hard to acquire, which makes the training process of numerous intelligent models unsatisfactory and leads to performance degradation Aiming at this problem, considering the local impulse characteristics as minimum diagnosable units, this paper proposes a signal adaptive augmentation network (SAAN) to effectively construct artificial samples for amplifying fault data volume. The SAAN consists of three sub-structures: impulse extractor, regulator, and classifier. The impulse extractor combines inner product matching principle to extract the local impulse features from insufficient samples to construct massive initial artificial samples. The regulator adopts convolution and deconvolution frameworks to regulate and reconstruct the initial artificial samples by specially designed synthetic loss function, which makes artificial samples have same characteristic distribution as real samples. The augmented method is used for validation on three bearing data with some advanced algorithms. Besides, a focal normalized network is designed for classification under small samples. Relevant experiments indicate that the SAAN shows a competitive performance with existing state-of-art diagnostic methods, which can helpfully improve recognition accuracies of various diagnostic models by 5%–35% under small sample prerequisite.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助亲亲亲采纳,获得10
1秒前
科研通AI6应助Zzzzzzz采纳,获得10
1秒前
王博林发布了新的文献求助10
1秒前
LBY发布了新的文献求助30
3秒前
3秒前
5秒前
7秒前
8秒前
8秒前
蒲云海发布了新的文献求助10
10秒前
wwqc完成签到,获得积分0
11秒前
12秒前
skip发布了新的文献求助10
12秒前
13秒前
miao发布了新的文献求助10
13秒前
14秒前
共享精神应助浮浮世世采纳,获得10
15秒前
16秒前
novQ发布了新的文献求助10
17秒前
爱笑以松发布了新的文献求助10
19秒前
沃德天发布了新的文献求助10
19秒前
马浩鑫完成签到,获得积分20
19秒前
乐乐应助Shan采纳,获得10
20秒前
杨19980625发布了新的文献求助10
21秒前
潜安完成签到 ,获得积分10
23秒前
无辜之卉完成签到,获得积分20
23秒前
iarve完成签到,获得积分10
23秒前
24秒前
24秒前
orixero应助杨19980625采纳,获得10
25秒前
无辜之卉发布了新的文献求助10
29秒前
Ao_Jiang完成签到,获得积分10
30秒前
沉静的芷容完成签到,获得积分10
30秒前
沃德天完成签到,获得积分10
30秒前
31秒前
33秒前
novQ完成签到,获得积分10
34秒前
35秒前
laber应助科研通管家采纳,获得50
35秒前
小二郎应助科研通管家采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563611
求助须知:如何正确求助?哪些是违规求助? 4648542
关于积分的说明 14685176
捐赠科研通 4590481
什么是DOI,文献DOI怎么找? 2518577
邀请新用户注册赠送积分活动 1491168
关于科研通互助平台的介绍 1462471