Intelligent fault diagnosis scheme via multi-module supervised-learning network with essential features capture-regulation strategy

反褶积 分类器(UML) 计算机科学 脉冲(物理) 人工智能 模式识别(心理学) 数据挖掘 提取器 机器学习 工程类 算法 工艺工程 量子力学 物理
作者
Yuanhong Chang,Qiang Chen,Jinglong Chen,Shuilong He,Fudong Li,Zitong Zhou
出处
期刊:Isa Transactions [Elsevier]
卷期号:129: 459-475 被引量:4
标识
DOI:10.1016/j.isatra.2022.02.038
摘要

The performance of data driven-based intelligent diagnosis method greatly depends on the quantity and quality of data. Nevertheless, due to realistic limitations, failure data is hard to acquire, which makes the training process of numerous intelligent models unsatisfactory and leads to performance degradation Aiming at this problem, considering the local impulse characteristics as minimum diagnosable units, this paper proposes a signal adaptive augmentation network (SAAN) to effectively construct artificial samples for amplifying fault data volume. The SAAN consists of three sub-structures: impulse extractor, regulator, and classifier. The impulse extractor combines inner product matching principle to extract the local impulse features from insufficient samples to construct massive initial artificial samples. The regulator adopts convolution and deconvolution frameworks to regulate and reconstruct the initial artificial samples by specially designed synthetic loss function, which makes artificial samples have same characteristic distribution as real samples. The augmented method is used for validation on three bearing data with some advanced algorithms. Besides, a focal normalized network is designed for classification under small samples. Relevant experiments indicate that the SAAN shows a competitive performance with existing state-of-art diagnostic methods, which can helpfully improve recognition accuracies of various diagnostic models by 5%–35% under small sample prerequisite.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zerolii完成签到,获得积分10
刚刚
SHRA1811发布了新的文献求助20
1秒前
2秒前
wwxd完成签到,获得积分10
2秒前
2秒前
Han关闭了Han文献求助
2秒前
嘻哈完成签到,获得积分10
2秒前
文字张张完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
深情安青应助Fly采纳,获得10
3秒前
3秒前
mikaqyan发布了新的文献求助10
3秒前
心向阳光完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
5秒前
5秒前
夏天夏天悄悄过去完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
jianrobsim发布了新的文献求助30
6秒前
6秒前
wzyyyyue发布了新的文献求助30
6秒前
6秒前
文静的立诚完成签到,获得积分10
6秒前
niko发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
niko发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525160
求助须知:如何正确求助?哪些是违规求助? 4615470
关于积分的说明 14548546
捐赠科研通 4553537
什么是DOI,文献DOI怎么找? 2495334
邀请新用户注册赠送积分活动 1475908
关于科研通互助平台的介绍 1447670