Intelligent fault diagnosis scheme via multi-module supervised-learning network with essential features capture-regulation strategy

反褶积 分类器(UML) 计算机科学 脉冲(物理) 人工智能 模式识别(心理学) 数据挖掘 提取器 机器学习 工程类 算法 工艺工程 量子力学 物理
作者
Yuanhong Chang,Qiang Chen,Jinglong Chen,Shuilong He,Fudong Li,Zitong Zhou
出处
期刊:Isa Transactions [Elsevier]
卷期号:129: 459-475 被引量:4
标识
DOI:10.1016/j.isatra.2022.02.038
摘要

The performance of data driven-based intelligent diagnosis method greatly depends on the quantity and quality of data. Nevertheless, due to realistic limitations, failure data is hard to acquire, which makes the training process of numerous intelligent models unsatisfactory and leads to performance degradation Aiming at this problem, considering the local impulse characteristics as minimum diagnosable units, this paper proposes a signal adaptive augmentation network (SAAN) to effectively construct artificial samples for amplifying fault data volume. The SAAN consists of three sub-structures: impulse extractor, regulator, and classifier. The impulse extractor combines inner product matching principle to extract the local impulse features from insufficient samples to construct massive initial artificial samples. The regulator adopts convolution and deconvolution frameworks to regulate and reconstruct the initial artificial samples by specially designed synthetic loss function, which makes artificial samples have same characteristic distribution as real samples. The augmented method is used for validation on three bearing data with some advanced algorithms. Besides, a focal normalized network is designed for classification under small samples. Relevant experiments indicate that the SAAN shows a competitive performance with existing state-of-art diagnostic methods, which can helpfully improve recognition accuracies of various diagnostic models by 5%–35% under small sample prerequisite.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
景明关注了科研通微信公众号
3秒前
杀猪刀完成签到,获得积分10
3秒前
白衣修身发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
赘婿应助瘦成闪电大圆脸采纳,获得10
6秒前
CodeCraft应助灵活性采纳,获得10
6秒前
逍遥发布了新的文献求助10
6秒前
7秒前
7秒前
john完成签到,获得积分10
8秒前
Owen应助菌菌采纳,获得10
8秒前
苦行僧发布了新的文献求助10
9秒前
gxh00完成签到,获得积分10
9秒前
Jerry完成签到,获得积分10
9秒前
9秒前
liuqi完成签到 ,获得积分10
9秒前
Angelyang完成签到,获得积分20
10秒前
同人一剑发布了新的文献求助10
10秒前
乐乐应助kerio采纳,获得10
11秒前
思源应助hongjie_w采纳,获得10
11秒前
11秒前
12秒前
13秒前
Candy发布了新的文献求助10
13秒前
彭于晏应助小歪同学采纳,获得10
13秒前
gaochi发布了新的文献求助10
13秒前
13秒前
14秒前
兴奋千兰发布了新的文献求助10
15秒前
15秒前
JamesPei应助自然浩阑采纳,获得10
15秒前
luna完成签到,获得积分10
15秒前
灵活性发布了新的文献求助10
17秒前
葭月十七发布了新的文献求助10
18秒前
知性的新梅完成签到,获得积分20
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135387
求助须知:如何正确求助?哪些是违规求助? 2786384
关于积分的说明 7777028
捐赠科研通 2442291
什么是DOI,文献DOI怎么找? 1298501
科研通“疑难数据库(出版商)”最低求助积分说明 625124
版权声明 600847