Intelligent fault diagnosis scheme via multi-module supervised-learning network with essential features capture-regulation strategy

反褶积 分类器(UML) 计算机科学 脉冲(物理) 人工智能 模式识别(心理学) 数据挖掘 提取器 机器学习 工程类 算法 工艺工程 量子力学 物理
作者
Yuanhong Chang,Qiang Chen,Jinglong Chen,Shuilong He,Fudong Li,Zitong Zhou
出处
期刊:Isa Transactions [Elsevier]
卷期号:129: 459-475 被引量:4
标识
DOI:10.1016/j.isatra.2022.02.038
摘要

The performance of data driven-based intelligent diagnosis method greatly depends on the quantity and quality of data. Nevertheless, due to realistic limitations, failure data is hard to acquire, which makes the training process of numerous intelligent models unsatisfactory and leads to performance degradation Aiming at this problem, considering the local impulse characteristics as minimum diagnosable units, this paper proposes a signal adaptive augmentation network (SAAN) to effectively construct artificial samples for amplifying fault data volume. The SAAN consists of three sub-structures: impulse extractor, regulator, and classifier. The impulse extractor combines inner product matching principle to extract the local impulse features from insufficient samples to construct massive initial artificial samples. The regulator adopts convolution and deconvolution frameworks to regulate and reconstruct the initial artificial samples by specially designed synthetic loss function, which makes artificial samples have same characteristic distribution as real samples. The augmented method is used for validation on three bearing data with some advanced algorithms. Besides, a focal normalized network is designed for classification under small samples. Relevant experiments indicate that the SAAN shows a competitive performance with existing state-of-art diagnostic methods, which can helpfully improve recognition accuracies of various diagnostic models by 5%–35% under small sample prerequisite.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yiyiyi完成签到 ,获得积分10
1秒前
1秒前
桐桐应助尼古拉斯二狗蛋采纳,获得10
1秒前
Zezezee完成签到,获得积分10
2秒前
将离发布了新的文献求助10
2秒前
调研昵称发布了新的文献求助10
3秒前
kingmin应助yijiubingshi采纳,获得10
3秒前
3秒前
4秒前
hxn完成签到,获得积分10
4秒前
奋斗尔安完成签到,获得积分10
4秒前
沙拉发布了新的文献求助10
5秒前
hajy完成签到 ,获得积分10
5秒前
单纯寒凝发布了新的文献求助10
5秒前
5秒前
junzilan发布了新的文献求助10
5秒前
田様应助卡卡采纳,获得10
6秒前
Zezezee发布了新的文献求助10
8秒前
复杂的问玉完成签到,获得积分20
9秒前
10秒前
10秒前
睡睡完成签到,获得积分10
10秒前
11秒前
12秒前
所所应助饕餮采纳,获得10
12秒前
平淡小凝发布了新的文献求助10
12秒前
nihaoxiaoai完成签到,获得积分10
13秒前
完美世界应助英俊的汉堡采纳,获得10
13秒前
爱静静应助hehe采纳,获得10
14秒前
九城发布了新的文献求助20
14秒前
斯文败类应助高君奇采纳,获得10
14秒前
小二郎应助特兰克斯采纳,获得10
14秒前
mojomars发布了新的文献求助10
14秒前
吃嘛嘛香完成签到,获得积分10
14秒前
wqy发布了新的文献求助10
15秒前
天天快乐应助新的心跳采纳,获得10
15秒前
Orange应助有益采纳,获得10
15秒前
17秒前
爆米花应助marinemiao采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808