Intelligent fault diagnosis scheme via multi-module supervised-learning network with essential features capture-regulation strategy

反褶积 分类器(UML) 计算机科学 脉冲(物理) 人工智能 模式识别(心理学) 数据挖掘 提取器 机器学习 工程类 算法 工艺工程 量子力学 物理
作者
Yuanhong Chang,Qiang Chen,Jinglong Chen,Shuilong He,Fudong Li,Zitong Zhou
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:129: 459-475 被引量:4
标识
DOI:10.1016/j.isatra.2022.02.038
摘要

The performance of data driven-based intelligent diagnosis method greatly depends on the quantity and quality of data. Nevertheless, due to realistic limitations, failure data is hard to acquire, which makes the training process of numerous intelligent models unsatisfactory and leads to performance degradation Aiming at this problem, considering the local impulse characteristics as minimum diagnosable units, this paper proposes a signal adaptive augmentation network (SAAN) to effectively construct artificial samples for amplifying fault data volume. The SAAN consists of three sub-structures: impulse extractor, regulator, and classifier. The impulse extractor combines inner product matching principle to extract the local impulse features from insufficient samples to construct massive initial artificial samples. The regulator adopts convolution and deconvolution frameworks to regulate and reconstruct the initial artificial samples by specially designed synthetic loss function, which makes artificial samples have same characteristic distribution as real samples. The augmented method is used for validation on three bearing data with some advanced algorithms. Besides, a focal normalized network is designed for classification under small samples. Relevant experiments indicate that the SAAN shows a competitive performance with existing state-of-art diagnostic methods, which can helpfully improve recognition accuracies of various diagnostic models by 5%–35% under small sample prerequisite.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王果果发布了新的文献求助10
1秒前
852应助zorro3574采纳,获得10
1秒前
1秒前
风清扬应助科研通管家采纳,获得30
1秒前
yx_cheng应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
2秒前
钢铁科研应助科研通管家采纳,获得10
2秒前
andrele应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
Akim应助junjie采纳,获得10
2秒前
xiong发布了新的文献求助10
4秒前
MchemG应助斑马还没睡采纳,获得10
5秒前
5秒前
5秒前
苦力完成签到 ,获得积分10
5秒前
11发布了新的文献求助10
5秒前
整齐灵阳完成签到,获得积分10
5秒前
6秒前
7秒前
洁净方盒发布了新的文献求助10
7秒前
MchemG应助马师采纳,获得10
7秒前
8秒前
三物发布了新的文献求助10
10秒前
10秒前
隐形曼青应助坚定的语芙采纳,获得10
10秒前
dodo应助整齐灵阳采纳,获得200
11秒前
DaiTing发布了新的文献求助10
12秒前
jin完成签到,获得积分10
12秒前
13秒前
Ge完成签到,获得积分10
13秒前
汉堡包应助linxy采纳,获得10
15秒前
15秒前
吴小胖发布了新的文献求助10
18秒前
18秒前
19秒前
布丁果冻完成签到,获得积分10
20秒前
21秒前
22秒前
gcl应助hhllhh采纳,获得30
22秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959791
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127539
捐赠科研通 3237976
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871758
科研通“疑难数据库(出版商)”最低求助积分说明 803019