Intelligent fault diagnosis scheme via multi-module supervised-learning network with essential features capture-regulation strategy

反褶积 分类器(UML) 计算机科学 脉冲(物理) 人工智能 模式识别(心理学) 数据挖掘 提取器 机器学习 工程类 算法 工艺工程 量子力学 物理
作者
Yuanhong Chang,Qiang Chen,Jinglong Chen,Shuilong He,Fudong Li,Zitong Zhou
出处
期刊:Isa Transactions [Elsevier]
卷期号:129: 459-475 被引量:4
标识
DOI:10.1016/j.isatra.2022.02.038
摘要

The performance of data driven-based intelligent diagnosis method greatly depends on the quantity and quality of data. Nevertheless, due to realistic limitations, failure data is hard to acquire, which makes the training process of numerous intelligent models unsatisfactory and leads to performance degradation Aiming at this problem, considering the local impulse characteristics as minimum diagnosable units, this paper proposes a signal adaptive augmentation network (SAAN) to effectively construct artificial samples for amplifying fault data volume. The SAAN consists of three sub-structures: impulse extractor, regulator, and classifier. The impulse extractor combines inner product matching principle to extract the local impulse features from insufficient samples to construct massive initial artificial samples. The regulator adopts convolution and deconvolution frameworks to regulate and reconstruct the initial artificial samples by specially designed synthetic loss function, which makes artificial samples have same characteristic distribution as real samples. The augmented method is used for validation on three bearing data with some advanced algorithms. Besides, a focal normalized network is designed for classification under small samples. Relevant experiments indicate that the SAAN shows a competitive performance with existing state-of-art diagnostic methods, which can helpfully improve recognition accuracies of various diagnostic models by 5%–35% under small sample prerequisite.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助王kk采纳,获得10
刚刚
小曼大王发布了新的文献求助10
刚刚
orixero应助nerchywi采纳,获得10
1秒前
1秒前
小王完成签到,获得积分10
2秒前
tiam发布了新的文献求助10
2秒前
卫三发布了新的文献求助10
2秒前
多啦a萌完成签到,获得积分20
2秒前
2秒前
2秒前
Ke发布了新的文献求助10
2秒前
NexusExplorer应助Chuncheng采纳,获得10
2秒前
2秒前
嘿嘿发布了新的文献求助10
2秒前
3秒前
3秒前
MsEEi完成签到,获得积分10
4秒前
春春完成签到,获得积分10
5秒前
合适的含莲完成签到,获得积分10
5秒前
5秒前
姜黄关注了科研通微信公众号
5秒前
liuliu发布了新的文献求助10
6秒前
周小丁完成签到,获得积分10
6秒前
Mia完成签到 ,获得积分10
6秒前
loewy完成签到,获得积分10
7秒前
11111发布了新的文献求助10
7秒前
7秒前
8秒前
hh完成签到,获得积分10
8秒前
8秒前
贪玩的豪英完成签到,获得积分10
8秒前
9秒前
9秒前
海贵发布了新的文献求助10
9秒前
杯喻发布了新的文献求助10
9秒前
问枫完成签到,获得积分20
9秒前
田様应助Lee采纳,获得10
10秒前
10秒前
SciGPT应助猜猜我是谁采纳,获得10
11秒前
yxt完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545545
求助须知:如何正确求助?哪些是违规求助? 4631578
关于积分的说明 14621138
捐赠科研通 4573196
什么是DOI,文献DOI怎么找? 2507417
邀请新用户注册赠送积分活动 1484163
关于科研通互助平台的介绍 1455383