重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Intelligent fault diagnosis scheme via multi-module supervised-learning network with essential features capture-regulation strategy

反褶积 分类器(UML) 计算机科学 脉冲(物理) 人工智能 模式识别(心理学) 数据挖掘 提取器 机器学习 工程类 算法 工艺工程 量子力学 物理
作者
Yuanhong Chang,Qiang Chen,Jinglong Chen,Shuilong He,Fudong Li,Zitong Zhou
出处
期刊:Isa Transactions [Elsevier]
卷期号:129: 459-475 被引量:4
标识
DOI:10.1016/j.isatra.2022.02.038
摘要

The performance of data driven-based intelligent diagnosis method greatly depends on the quantity and quality of data. Nevertheless, due to realistic limitations, failure data is hard to acquire, which makes the training process of numerous intelligent models unsatisfactory and leads to performance degradation Aiming at this problem, considering the local impulse characteristics as minimum diagnosable units, this paper proposes a signal adaptive augmentation network (SAAN) to effectively construct artificial samples for amplifying fault data volume. The SAAN consists of three sub-structures: impulse extractor, regulator, and classifier. The impulse extractor combines inner product matching principle to extract the local impulse features from insufficient samples to construct massive initial artificial samples. The regulator adopts convolution and deconvolution frameworks to regulate and reconstruct the initial artificial samples by specially designed synthetic loss function, which makes artificial samples have same characteristic distribution as real samples. The augmented method is used for validation on three bearing data with some advanced algorithms. Besides, a focal normalized network is designed for classification under small samples. Relevant experiments indicate that the SAAN shows a competitive performance with existing state-of-art diagnostic methods, which can helpfully improve recognition accuracies of various diagnostic models by 5%–35% under small sample prerequisite.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ff完成签到,获得积分10
1秒前
xixi发布了新的文献求助20
1秒前
9527完成签到,获得积分10
1秒前
栀染完成签到,获得积分10
1秒前
白马完成签到,获得积分10
2秒前
2秒前
3秒前
伶俐的不尤完成签到,获得积分10
3秒前
宋贺贺完成签到,获得积分10
3秒前
3秒前
FashionBoy应助汽水采纳,获得10
4秒前
4秒前
小一发布了新的文献求助10
5秒前
5秒前
5秒前
箱箱完成签到,获得积分10
6秒前
李健应助Danae采纳,获得30
6秒前
现实的飞风完成签到,获得积分10
7秒前
7秒前
北极星发布了新的文献求助10
7秒前
白马发布了新的文献求助10
8秒前
hilm应助Alora采纳,获得20
8秒前
8秒前
天天快乐应助Wangshengnan采纳,获得10
8秒前
文静的夜梅完成签到 ,获得积分10
8秒前
Sandy发布了新的文献求助10
9秒前
9秒前
轩仔完成签到 ,获得积分10
9秒前
liyiming完成签到,获得积分10
10秒前
缓慢明辉完成签到,获得积分10
10秒前
溟夔蝶魅完成签到,获得积分20
11秒前
今后应助luckyhan采纳,获得10
11秒前
11秒前
lily完成签到 ,获得积分10
12秒前
chivu1980发布了新的文献求助10
12秒前
元神大王发布了新的文献求助10
13秒前
老孟完成签到,获得积分10
13秒前
锣大炮完成签到,获得积分10
13秒前
苏夏发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466072
求助须知:如何正确求助?哪些是违规求助? 4570135
关于积分的说明 14322892
捐赠科研通 4496608
什么是DOI,文献DOI怎么找? 2463448
邀请新用户注册赠送积分活动 1452319
关于科研通互助平台的介绍 1427516