Contrastive Meta Learning with Behavior Multiplicity for Recommendation

计算机科学 依赖关系(UML) 实证研究 编码 社会化媒体 推荐系统 人工智能 人机交互 机器学习 情报检索 万维网 生物化学 基因 认识论 哲学 化学
作者
Wei Wei,Chao Huang,Lianghao Xia,Yong Xu,Jiashu Zhao,Dawei Yin
标识
DOI:10.1145/3488560.3498527
摘要

A well-informed recommendation framework could not only help users identify their interested items, but also benefit the revenue of various online platforms (e.g., e-commerce, social media). Traditional recommendation models usually assume that only a single type of interaction exists between user and item, and fail to model the multiplex user-item relationships from multi-typed user behavior data, such as page view, add-to-favourite and purchase. While some recent studies propose to capture the dependencies across different types of behaviors, two important challenges have been less explored: i) Dealing with the sparse supervision signal under target behaviors (e.g., purchase). ii) Capturing the personalized multi-behavior patterns with customized dependency modeling. To tackle the above challenges, we devise a new model CML, Contrastive Meta Learning (CML), to maintain dedicated cross-type behavior dependency for different users. In particular, we propose a multi-behavior contrastive learning framework to distill transferable knowledge across different types of behaviors via the constructed contrastive loss. In addition, to capture the diverse multi-behavior patterns, we design a contrastive meta network to encode the customized behavior heterogeneity for different users. Extensive experiments on three real-world datasets indicate that our method consistently outperforms various state-of-the-art recommendation methods. Our empirical studies further suggest that the contrastive meta learning paradigm offers great potential for capturing the behavior multiplicity in recommendation. We release our model implementation at: https://github.com/weiwei1206/CML.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助Puffkten采纳,获得10
刚刚
only完成签到 ,获得积分10
2秒前
怕黑剑封发布了新的文献求助10
2秒前
4秒前
Eon完成签到,获得积分10
4秒前
5秒前
5秒前
令狐秋双完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
江边鸟完成签到 ,获得积分10
7秒前
微笑翠桃完成签到,获得积分20
8秒前
小开心发布了新的文献求助10
8秒前
Eon发布了新的文献求助10
8秒前
姚美阁完成签到 ,获得积分10
9秒前
mufcyang发布了新的文献求助10
10秒前
11秒前
11秒前
Puffkten发布了新的文献求助10
12秒前
与梦随行2011完成签到,获得积分10
12秒前
12秒前
高哈哈哈完成签到,获得积分10
13秒前
yr发布了新的文献求助10
16秒前
17秒前
微笑翠桃发布了新的文献求助10
20秒前
20秒前
马佳音完成签到 ,获得积分10
21秒前
在水一方应助Eon采纳,获得10
21秒前
TB123发布了新的文献求助10
21秒前
23秒前
JHL完成签到 ,获得积分10
23秒前
25秒前
25秒前
黎是叻熠黎完成签到,获得积分10
26秒前
每天必补一科完成签到,获得积分10
26秒前
花生完成签到,获得积分10
27秒前
mufcyang完成签到,获得积分10
27秒前
28秒前
缪缪发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714