Contrastive Meta Learning with Behavior Multiplicity for Recommendation

计算机科学 依赖关系(UML) 实证研究 编码 社会化媒体 推荐系统 人工智能 人机交互 机器学习 情报检索 万维网 生物化学 化学 认识论 基因 哲学
作者
Wei Wei,Chao Huang,Lianghao Xia,Yong Xu,Jiashu Zhao,Dawei Yin
标识
DOI:10.1145/3488560.3498527
摘要

A well-informed recommendation framework could not only help users identify their interested items, but also benefit the revenue of various online platforms (e.g., e-commerce, social media). Traditional recommendation models usually assume that only a single type of interaction exists between user and item, and fail to model the multiplex user-item relationships from multi-typed user behavior data, such as page view, add-to-favourite and purchase. While some recent studies propose to capture the dependencies across different types of behaviors, two important challenges have been less explored: i) Dealing with the sparse supervision signal under target behaviors (e.g., purchase). ii) Capturing the personalized multi-behavior patterns with customized dependency modeling. To tackle the above challenges, we devise a new model CML, Contrastive Meta Learning (CML), to maintain dedicated cross-type behavior dependency for different users. In particular, we propose a multi-behavior contrastive learning framework to distill transferable knowledge across different types of behaviors via the constructed contrastive loss. In addition, to capture the diverse multi-behavior patterns, we design a contrastive meta network to encode the customized behavior heterogeneity for different users. Extensive experiments on three real-world datasets indicate that our method consistently outperforms various state-of-the-art recommendation methods. Our empirical studies further suggest that the contrastive meta learning paradigm offers great potential for capturing the behavior multiplicity in recommendation. We release our model implementation at: https://github.com/weiwei1206/CML.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助lszhw采纳,获得10
刚刚
刚刚
策略完成签到,获得积分10
1秒前
无花果应助王婷采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得50
1秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
英姑应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
wop111应助科研通管家采纳,获得20
2秒前
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
Song完成签到,获得积分10
2秒前
思源应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得30
3秒前
3秒前
wanci应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得30
3秒前
田様应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
Li chun sheng发布了新的文献求助10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950123
求助须知:如何正确求助?哪些是违规求助? 4213072
关于积分的说明 13102608
捐赠科研通 3994857
什么是DOI,文献DOI怎么找? 2186618
邀请新用户注册赠送积分活动 1201904
关于科研通互助平台的介绍 1115269