Contrastive Meta Learning with Behavior Multiplicity for Recommendation

计算机科学 依赖关系(UML) 实证研究 编码 社会化媒体 推荐系统 人工智能 人机交互 机器学习 情报检索 万维网 生物化学 基因 认识论 哲学 化学
作者
Wei Wei,Chao Huang,Lianghao Xia,Yong Xu,Jiashu Zhao,Dawei Yin
标识
DOI:10.1145/3488560.3498527
摘要

A well-informed recommendation framework could not only help users identify their interested items, but also benefit the revenue of various online platforms (e.g., e-commerce, social media). Traditional recommendation models usually assume that only a single type of interaction exists between user and item, and fail to model the multiplex user-item relationships from multi-typed user behavior data, such as page view, add-to-favourite and purchase. While some recent studies propose to capture the dependencies across different types of behaviors, two important challenges have been less explored: i) Dealing with the sparse supervision signal under target behaviors (e.g., purchase). ii) Capturing the personalized multi-behavior patterns with customized dependency modeling. To tackle the above challenges, we devise a new model CML, Contrastive Meta Learning (CML), to maintain dedicated cross-type behavior dependency for different users. In particular, we propose a multi-behavior contrastive learning framework to distill transferable knowledge across different types of behaviors via the constructed contrastive loss. In addition, to capture the diverse multi-behavior patterns, we design a contrastive meta network to encode the customized behavior heterogeneity for different users. Extensive experiments on three real-world datasets indicate that our method consistently outperforms various state-of-the-art recommendation methods. Our empirical studies further suggest that the contrastive meta learning paradigm offers great potential for capturing the behavior multiplicity in recommendation. We release our model implementation at: https://github.com/weiwei1206/CML.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助蜡笔小新采纳,获得10
刚刚
头头完成签到,获得积分10
刚刚
刚刚
wangq完成签到,获得积分10
1秒前
rlix完成签到,获得积分20
1秒前
biomichael完成签到,获得积分10
1秒前
1秒前
1秒前
FAN完成签到,获得积分10
2秒前
ning完成签到,获得积分10
2秒前
共享精神应助Paddi采纳,获得10
2秒前
瞌睡社畜发布了新的文献求助10
3秒前
跳跳虎完成签到 ,获得积分10
3秒前
nini完成签到,获得积分10
3秒前
英俊的铭应助愉快绿蓉采纳,获得50
4秒前
4秒前
4秒前
5秒前
朱桂林完成签到,获得积分10
5秒前
小怪兽发布了新的文献求助10
5秒前
5秒前
6秒前
华仔应助Finley采纳,获得10
7秒前
小琪猪发布了新的文献求助10
7秒前
大晟归来发布了新的文献求助10
7秒前
懵懂的毛豆完成签到,获得积分10
8秒前
超级的飞飞完成签到,获得积分10
8秒前
8秒前
樱香音子发布了新的文献求助30
8秒前
fsky发布了新的文献求助10
9秒前
Shen发布了新的文献求助10
9秒前
俊秀的半雪完成签到,获得积分10
9秒前
22完成签到 ,获得积分10
10秒前
Orange应助鲸鲸采纳,获得10
10秒前
11秒前
11秒前
12秒前
月月鸟完成签到 ,获得积分10
12秒前
研友_Z11kkZ完成签到,获得积分10
13秒前
打打应助小钱全采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635