环境友好型
材料科学
涂层
蒸发
吸收(声学)
热的
多孔性
太阳能
工艺工程
纳米技术
复合材料
工程类
气象学
物理
电气工程
生物
生态学
作者
Nazakat Ali,Saghir Abbas,Yucai Cao,Hira Fazal,Jun Zhu,Chin Wei Lai,Jiantao Zai,Xuefeng Qian
标识
DOI:10.1016/j.jcis.2022.02.012
摘要
Solar steam generation has great potential in alleviating freshwater crises, particularly in regions with accessible seawater and abundant insolation. Inexpensive, efficient, and eco-friendly photothermal materials are desired to fabricate sunlight-driven evaporation devices. Here, we have designed an economical strategy to fabricate a high-performance wood-based solar steam generation device. In current study, 3D-hierarchical Cu3SnS4 has been loaded on wood substrates of variable sizes via an in-situ solvothermal method. Considering the water transportation capacity and thermal insulation property of wood, an enhanced light absorption was achieved by a uniform coating of Cu3SnS4 on the inside and outside of the 3D porous structure of the wood. Thanks for the synergistic effect of Cu3SnS4 and wood substrate, the obtained composite endorsed high-performance solar steam generation with a steam generation efficiency of 90% and an evaporation rate as high as 1.35 kg m-2h-1 under one sun.
科研通智能强力驱动
Strongly Powered by AbleSci AI