Effects of carbon fibre reinforcement on the geometric properties of PETG-based filament using FFF additive manufacturing

熔丝制造 材料科学 平坦度(宇宙学) 复合材料 表面粗糙度 聚对苯二甲酸乙二醇酯 聚合物 宇宙学 量子力学 物理
作者
Enrique J. García,Pedro José Núñez,M.A. Caminero,J.M. Chacón,Sagar Kamarthi
出处
期刊:Composites Part B-engineering [Elsevier]
卷期号:235: 109766-109766 被引量:26
标识
DOI:10.1016/j.compositesb.2022.109766
摘要

The increasing worldwide demand for high-quality on-demand products manufactured with flexible and efficient productions systems has led to the development additive manufacturing technologies (AM). One of the most popular AM technologies, is fused filament fabrication (FFF) due to its ability to manufacture complex parts using a broad range of thermoplastic polymers with low production costs. However, FFF still cannot compete with traditional manufacturing processes when it comes to producing high quality end-use products. To improve mechanical properties and geometric quality features of end-use products, researchers are developing new advanced filaments infused with nanoparticles, short and continuous fibres. In the search for enhanced materials, glycol-modified polyethylene terephthalate (PETG) filaments and PETG reinforced with carbon fibres (PETG-CF) have been developed for FFF, but the effects of the addition of these fibres on geometric properties have not been analysed. The main objective of this study is to evaluate the impact of fibre addition to PETG filaments on the geometric properties of FFF manufactured parts by analysing their dimensional accuracy, and surface roughness. The effect of the 3D printing parameter − speed, layer thickness, and build orientation – on the geometric behaviour were assessed. Artificial neural network based predictive models of geometric parameters of the two candidate PETG-based filaments were used to find optimal printing parameters. In general terms, the carbon fibre addition to PETG-based polymers negatively affected the dimensional accuracy, flatness, and surface roughness in most of the printing conditions, significantly reducing the printing parameter combinations where the optimal values were achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
M张完成签到,获得积分10
2秒前
3秒前
BU发布了新的文献求助30
3秒前
刘刘发布了新的文献求助30
3秒前
受伤惋庭发布了新的文献求助10
4秒前
贝贝小臭屁完成签到 ,获得积分10
4秒前
6秒前
宋豆豆完成签到,获得积分10
8秒前
李学谦完成签到,获得积分10
8秒前
dannielee完成签到,获得积分10
9秒前
zwj发布了新的文献求助10
9秒前
WD完成签到,获得积分10
10秒前
???完成签到,获得积分10
11秒前
李学谦发布了新的文献求助10
13秒前
慕青应助端庄的钢铁侠采纳,获得30
13秒前
慕青应助可爱君采纳,获得10
18秒前
熙子完成签到 ,获得积分10
18秒前
21秒前
小南子完成签到,获得积分10
22秒前
俏皮绿蓉完成签到 ,获得积分10
22秒前
22秒前
和谐幻柏发布了新的文献求助10
24秒前
25秒前
25秒前
25秒前
26秒前
27秒前
30秒前
30秒前
二小完成签到 ,获得积分10
31秒前
天天快乐应助一针超人采纳,获得10
32秒前
魁梧的灵寒完成签到,获得积分20
32秒前
小啵完成签到,获得积分10
32秒前
33秒前
34秒前
kk摆烂完成签到,获得积分10
35秒前
37秒前
38秒前
40秒前
41秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Natural History of Mantodea 螳螂的自然史 500
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124660
求助须知:如何正确求助?哪些是违规求助? 2774994
关于积分的说明 7724945
捐赠科研通 2430508
什么是DOI,文献DOI怎么找? 1291144
科研通“疑难数据库(出版商)”最低求助积分说明 622083
版权声明 600323