A comprehensive comparison on cell type composition inference for spatial transcriptomics data

反褶积 非负矩阵分解 推论 计算机科学 数据挖掘 人工智能 鉴定(生物学) 模式识别(心理学) 计算生物学 矩阵分解 算法 生物 植物 量子力学 物理 特征向量
作者
Jiawen Chen,Weifang Liu,Tianyou Luo,Zhentao Yu,Min-Zhi Jiang,Jia Wen,Gaorav P. Gupta,Paola Giusti,Hongtu Zhu,Yuchen Yang,Yun Li
标识
DOI:10.1101/2022.02.20.481171
摘要

Abstract Spatial transcriptomic (ST) technologies allow researchers to examine high-quality RNA-sequencing data along with maintained two-dimensional positional information as well as a co-registered histology image. A popular use of ST omics data is to provide insights about tissue structure and spatially unique features. However, due to the technical nature unique to most ST data, the resolution varies from a diameter of 2-10 μm to 50-100 μm instead of single-cell resolution, which brings uncertainty into cell number and cell mixture within each ST spot. Motivated by the important role for spatial arrangement of cell types within a tissue in physiology and disease pathogenesis, several ST deconvolution methods have been developed and are being used to explore gene expression variation and identification of spatial domains. The aim of this work is to review state-of-the-art methods for ST deconvolution, while comparing their strengths and weaknesses. Specifically, we use four real datasets to examine the performance of eight methods across different tissues and technological platforms. Key Points Cell mixture inference is a critical step in the analysis of spatial transcriptomics (ST) data to prevent downstream analysis suffering from confounding factors at the spot level. Existing ST deconvolution methods can be classified into three groups: probabilistic-based, non-negative matrix factorization and non-negative least squares based, and other deep learning framework-based methods. We compared eight ST deconvolution methods by using two single cell level resolution datasets and two spot level resolution ST datasets. We provided practical guidelines for the choice of method under different scenarios as well as the optimal subsets of genes to use for each method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄纸飞机完成签到,获得积分10
1秒前
冷酷豌豆发布了新的文献求助10
2秒前
2秒前
机智的天天完成签到 ,获得积分10
2秒前
kakaC完成签到,获得积分10
2秒前
万能图书馆应助XunlongJi采纳,获得10
2秒前
2秒前
快乐慕灵完成签到,获得积分10
3秒前
QDU应助要减肥的鹰采纳,获得10
3秒前
崔尔蓉完成签到,获得积分10
4秒前
傻傻的念瑶完成签到 ,获得积分10
4秒前
Haifeng发布了新的文献求助10
4秒前
4秒前
Yang完成签到,获得积分20
5秒前
megan完成签到,获得积分10
5秒前
6秒前
heerkeli发布了新的文献求助10
7秒前
Hey发布了新的文献求助10
7秒前
LiLi完成签到,获得积分10
8秒前
Biogene发布了新的文献求助10
9秒前
锦诗完成签到,获得积分10
9秒前
善学以致用应助王冰洁采纳,获得10
9秒前
勤恳的一斩完成签到,获得积分10
10秒前
10秒前
Ustinian发布了新的文献求助10
10秒前
XTNI完成签到 ,获得积分10
10秒前
HXuer完成签到,获得积分10
10秒前
0816my应助luu采纳,获得10
11秒前
he完成签到,获得积分10
11秒前
汉堡包应助VOLUNTINA采纳,获得10
12秒前
Tao完成签到,获得积分10
12秒前
土豆丝完成签到 ,获得积分10
12秒前
wallonce发布了新的文献求助10
13秒前
fan完成签到 ,获得积分10
13秒前
PCEEN发布了新的文献求助10
14秒前
he发布了新的文献求助10
14秒前
15秒前
shenzhou9发布了新的文献求助10
15秒前
叶泽完成签到,获得积分10
15秒前
透明人完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298999
求助须知:如何正确求助?哪些是违规求助? 2934058
关于积分的说明 8466290
捐赠科研通 2607414
什么是DOI,文献DOI怎么找? 1423664
科研通“疑难数据库(出版商)”最低求助积分说明 661661
邀请新用户注册赠送积分活动 645286