A comprehensive comparison on cell type composition inference for spatial transcriptomics data

反褶积 非负矩阵分解 推论 计算机科学 数据挖掘 人工智能 鉴定(生物学) 模式识别(心理学) 计算生物学 矩阵分解 算法 生物 植物 量子力学 物理 特征向量
作者
Jiawen Chen,Weifang Liu,Tianyou Luo,Zhentao Yu,Min-Zhi Jiang,Jia Wen,Gaorav P. Gupta,Paola Giusti,Hongtu Zhu,Yuchen Yang,Yun Li
标识
DOI:10.1101/2022.02.20.481171
摘要

Abstract Spatial transcriptomic (ST) technologies allow researchers to examine high-quality RNA-sequencing data along with maintained two-dimensional positional information as well as a co-registered histology image. A popular use of ST omics data is to provide insights about tissue structure and spatially unique features. However, due to the technical nature unique to most ST data, the resolution varies from a diameter of 2-10 μm to 50-100 μm instead of single-cell resolution, which brings uncertainty into cell number and cell mixture within each ST spot. Motivated by the important role for spatial arrangement of cell types within a tissue in physiology and disease pathogenesis, several ST deconvolution methods have been developed and are being used to explore gene expression variation and identification of spatial domains. The aim of this work is to review state-of-the-art methods for ST deconvolution, while comparing their strengths and weaknesses. Specifically, we use four real datasets to examine the performance of eight methods across different tissues and technological platforms. Key Points Cell mixture inference is a critical step in the analysis of spatial transcriptomics (ST) data to prevent downstream analysis suffering from confounding factors at the spot level. Existing ST deconvolution methods can be classified into three groups: probabilistic-based, non-negative matrix factorization and non-negative least squares based, and other deep learning framework-based methods. We compared eight ST deconvolution methods by using two single cell level resolution datasets and two spot level resolution ST datasets. We provided practical guidelines for the choice of method under different scenarios as well as the optimal subsets of genes to use for each method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝雨真完成签到,获得积分20
刚刚
小尤同学发布了新的文献求助10
刚刚
刚刚
欢呼阁发布了新的文献求助10
刚刚
乐乐乐发布了新的文献求助10
刚刚
刚刚
左南风完成签到 ,获得积分10
刚刚
上官若男应助听闻采纳,获得10
1秒前
1秒前
1秒前
小蘑菇应助肯瑞恩哭哭采纳,获得10
2秒前
2秒前
2秒前
CodeCraft应助tangtang787采纳,获得10
2秒前
Jiayee发布了新的文献求助10
3秒前
4秒前
孤傲的静脉完成签到,获得积分10
4秒前
Steve完成签到,获得积分10
4秒前
哈哈哈哈完成签到,获得积分10
4秒前
Amandadym完成签到 ,获得积分10
4秒前
zimo完成签到,获得积分10
4秒前
儒雅猕猴桃完成签到,获得积分10
5秒前
苗儿发布了新的文献求助10
5秒前
都美秋发布了新的文献求助20
5秒前
5秒前
wanci应助shaadoushi采纳,获得10
6秒前
不想长大完成签到 ,获得积分20
6秒前
6秒前
科研通AI6应助朝朝采纳,获得10
6秒前
7秒前
vicki完成签到,获得积分10
7秒前
啵妞发布了新的文献求助10
7秒前
fighting发布了新的文献求助10
7秒前
今后应助童金炜采纳,获得10
7秒前
天天快乐应助tl采纳,获得10
7秒前
hj123完成签到,获得积分10
8秒前
乐悠悠完成签到 ,获得积分10
8秒前
科研通AI2S应助轻雨采纳,获得10
8秒前
lin完成签到,获得积分10
8秒前
左丘尔阳给左丘尔阳的求助进行了留言
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257658
求助须知:如何正确求助?哪些是违规求助? 4419729
关于积分的说明 13757299
捐赠科研通 4293125
什么是DOI,文献DOI怎么找? 2355777
邀请新用户注册赠送积分活动 1352208
关于科研通互助平台的介绍 1313034