A comprehensive comparison on cell type composition inference for spatial transcriptomics data

反褶积 非负矩阵分解 推论 计算机科学 数据挖掘 人工智能 鉴定(生物学) 模式识别(心理学) 计算生物学 矩阵分解 算法 生物 植物 量子力学 物理 特征向量
作者
Jiawen Chen,Weifang Liu,Tianyou Luo,Zhentao Yu,Min-Zhi Jiang,Jia Wen,Gaorav P. Gupta,Paola Giusti,Hongtu Zhu,Yuchen Yang,Yun Li
标识
DOI:10.1101/2022.02.20.481171
摘要

Abstract Spatial transcriptomic (ST) technologies allow researchers to examine high-quality RNA-sequencing data along with maintained two-dimensional positional information as well as a co-registered histology image. A popular use of ST omics data is to provide insights about tissue structure and spatially unique features. However, due to the technical nature unique to most ST data, the resolution varies from a diameter of 2-10 μm to 50-100 μm instead of single-cell resolution, which brings uncertainty into cell number and cell mixture within each ST spot. Motivated by the important role for spatial arrangement of cell types within a tissue in physiology and disease pathogenesis, several ST deconvolution methods have been developed and are being used to explore gene expression variation and identification of spatial domains. The aim of this work is to review state-of-the-art methods for ST deconvolution, while comparing their strengths and weaknesses. Specifically, we use four real datasets to examine the performance of eight methods across different tissues and technological platforms. Key Points Cell mixture inference is a critical step in the analysis of spatial transcriptomics (ST) data to prevent downstream analysis suffering from confounding factors at the spot level. Existing ST deconvolution methods can be classified into three groups: probabilistic-based, non-negative matrix factorization and non-negative least squares based, and other deep learning framework-based methods. We compared eight ST deconvolution methods by using two single cell level resolution datasets and two spot level resolution ST datasets. We provided practical guidelines for the choice of method under different scenarios as well as the optimal subsets of genes to use for each method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李胖潘完成签到 ,获得积分10
1秒前
蝉鸣一夏发布了新的文献求助10
1秒前
姜友舜发布了新的文献求助10
1秒前
easton完成签到,获得积分10
2秒前
在水一方应助xh采纳,获得10
2秒前
luckweb发布了新的文献求助10
2秒前
肌肉猛男完成签到,获得积分10
3秒前
de完成签到,获得积分10
3秒前
jie发布了新的文献求助10
4秒前
aurevoir完成签到,获得积分10
4秒前
夏辞完成签到,获得积分10
5秒前
英俊的铭应助灰灰采纳,获得10
5秒前
7890733完成签到,获得积分10
5秒前
xukaixuan001完成签到,获得积分10
6秒前
6秒前
端庄的山蝶完成签到,获得积分10
7秒前
7秒前
zzz完成签到,获得积分10
8秒前
万能图书馆应助Lisztan采纳,获得10
8秒前
工艺员完成签到,获得积分10
8秒前
Akim应助张鑏采纳,获得30
8秒前
overThat完成签到,获得积分10
9秒前
SMART完成签到,获得积分10
9秒前
完美世界应助jin采纳,获得10
9秒前
自觉沛文完成签到,获得积分10
10秒前
wangyue完成签到 ,获得积分10
10秒前
边雨完成签到 ,获得积分10
11秒前
烟花应助程风破浪采纳,获得10
11秒前
写论文好难完成签到,获得积分10
11秒前
时s完成签到,获得积分10
11秒前
研友_LNB7rL完成签到,获得积分10
11秒前
11秒前
jie完成签到,获得积分10
11秒前
李爱国应助alicenanbei采纳,获得10
12秒前
12秒前
烂漫的易真完成签到,获得积分10
13秒前
14秒前
七千完成签到,获得积分20
14秒前
王大锤完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080780
捐赠科研通 4434091
什么是DOI,文献DOI怎么找? 2434394
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349