A comprehensive comparison on cell type composition inference for spatial transcriptomics data

反褶积 非负矩阵分解 推论 计算机科学 数据挖掘 人工智能 鉴定(生物学) 模式识别(心理学) 计算生物学 矩阵分解 算法 生物 植物 量子力学 物理 特征向量
作者
Jiawen Chen,Weifang Liu,Tianyou Luo,Zhentao Yu,Min-Zhi Jiang,Jia Wen,Gaorav P. Gupta,Paola Giusti,Hongtu Zhu,Yuchen Yang,Yun Li
标识
DOI:10.1101/2022.02.20.481171
摘要

Abstract Spatial transcriptomic (ST) technologies allow researchers to examine high-quality RNA-sequencing data along with maintained two-dimensional positional information as well as a co-registered histology image. A popular use of ST omics data is to provide insights about tissue structure and spatially unique features. However, due to the technical nature unique to most ST data, the resolution varies from a diameter of 2-10 μm to 50-100 μm instead of single-cell resolution, which brings uncertainty into cell number and cell mixture within each ST spot. Motivated by the important role for spatial arrangement of cell types within a tissue in physiology and disease pathogenesis, several ST deconvolution methods have been developed and are being used to explore gene expression variation and identification of spatial domains. The aim of this work is to review state-of-the-art methods for ST deconvolution, while comparing their strengths and weaknesses. Specifically, we use four real datasets to examine the performance of eight methods across different tissues and technological platforms. Key Points Cell mixture inference is a critical step in the analysis of spatial transcriptomics (ST) data to prevent downstream analysis suffering from confounding factors at the spot level. Existing ST deconvolution methods can be classified into three groups: probabilistic-based, non-negative matrix factorization and non-negative least squares based, and other deep learning framework-based methods. We compared eight ST deconvolution methods by using two single cell level resolution datasets and two spot level resolution ST datasets. We provided practical guidelines for the choice of method under different scenarios as well as the optimal subsets of genes to use for each method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wqm完成签到,获得积分10
1秒前
戏言121发布了新的文献求助10
2秒前
2秒前
3秒前
优雅的流沙完成签到 ,获得积分10
4秒前
猫的海完成签到,获得积分10
4秒前
4秒前
Eason Liu完成签到,获得积分0
5秒前
Wendy1204完成签到,获得积分20
5秒前
Hello应助654采纳,获得10
5秒前
咩咩羊完成签到,获得积分10
5秒前
9秒前
lianqing完成签到,获得积分10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
10秒前
RC_Wang应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
hh应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得30
10秒前
10秒前
Leif应助科研通管家采纳,获得20
10秒前
10秒前
11秒前
11秒前
12秒前
12秒前
忘羡222发布了新的文献求助20
13秒前
丰富猕猴桃完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
JamesPei应助咿咿呀呀采纳,获得10
14秒前
www完成签到,获得积分10
14秒前
科研通AI2S应助Jenny采纳,获得10
15秒前
limin完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824