A comprehensive comparison on cell type composition inference for spatial transcriptomics data

反褶积 非负矩阵分解 推论 计算机科学 数据挖掘 人工智能 鉴定(生物学) 模式识别(心理学) 计算生物学 矩阵分解 算法 生物 植物 量子力学 物理 特征向量
作者
Jiawen Chen,Weifang Liu,Tianyou Luo,Zhentao Yu,Min-Zhi Jiang,Jia Wen,Gaorav P. Gupta,Paola Giusti,Hongtu Zhu,Yuchen Yang,Yun Li
标识
DOI:10.1101/2022.02.20.481171
摘要

Abstract Spatial transcriptomic (ST) technologies allow researchers to examine high-quality RNA-sequencing data along with maintained two-dimensional positional information as well as a co-registered histology image. A popular use of ST omics data is to provide insights about tissue structure and spatially unique features. However, due to the technical nature unique to most ST data, the resolution varies from a diameter of 2-10 μm to 50-100 μm instead of single-cell resolution, which brings uncertainty into cell number and cell mixture within each ST spot. Motivated by the important role for spatial arrangement of cell types within a tissue in physiology and disease pathogenesis, several ST deconvolution methods have been developed and are being used to explore gene expression variation and identification of spatial domains. The aim of this work is to review state-of-the-art methods for ST deconvolution, while comparing their strengths and weaknesses. Specifically, we use four real datasets to examine the performance of eight methods across different tissues and technological platforms. Key Points Cell mixture inference is a critical step in the analysis of spatial transcriptomics (ST) data to prevent downstream analysis suffering from confounding factors at the spot level. Existing ST deconvolution methods can be classified into three groups: probabilistic-based, non-negative matrix factorization and non-negative least squares based, and other deep learning framework-based methods. We compared eight ST deconvolution methods by using two single cell level resolution datasets and two spot level resolution ST datasets. We provided practical guidelines for the choice of method under different scenarios as well as the optimal subsets of genes to use for each method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
陈媛发布了新的文献求助10
2秒前
JOJO完成签到,获得积分10
2秒前
Lucas应助ccc1采纳,获得10
2秒前
liudw完成签到,获得积分10
3秒前
周翔完成签到,获得积分10
3秒前
eric888应助winndsd2采纳,获得150
3秒前
机智采枫完成签到 ,获得积分10
3秒前
无辜的猎豹完成签到 ,获得积分10
3秒前
4秒前
mix完成签到,获得积分10
4秒前
dht发布了新的文献求助10
4秒前
4秒前
PhD发布了新的文献求助10
4秒前
科研通AI6应助bin采纳,获得30
4秒前
尉迟希望应助君莫笑采纳,获得10
4秒前
5秒前
归尘发布了新的文献求助10
6秒前
秋鱼完成签到,获得积分10
6秒前
小王发布了新的文献求助10
6秒前
小竹笋完成签到,获得积分10
6秒前
狂野的凡旋完成签到,获得积分10
6秒前
7秒前
嘻嘻完成签到,获得积分10
7秒前
研友_8WO978完成签到,获得积分10
7秒前
正直海之完成签到,获得积分10
7秒前
1397完成签到 ,获得积分10
8秒前
8秒前
大海完成签到,获得积分10
8秒前
Su发布了新的文献求助10
8秒前
ww完成签到,获得积分10
8秒前
mirror完成签到,获得积分10
10秒前
10秒前
11秒前
秋鱼发布了新的文献求助10
11秒前
wanghuan完成签到,获得积分10
12秒前
乐乐应助wss采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439589
求助须知:如何正确求助?哪些是违规求助? 4550712
关于积分的说明 14226011
捐赠科研通 4471804
什么是DOI,文献DOI怎么找? 2450484
邀请新用户注册赠送积分活动 1441341
关于科研通互助平台的介绍 1417912