A comprehensive comparison on cell type composition inference for spatial transcriptomics data

反褶积 非负矩阵分解 推论 计算机科学 数据挖掘 人工智能 鉴定(生物学) 模式识别(心理学) 计算生物学 矩阵分解 算法 生物 植物 量子力学 物理 特征向量
作者
Jiawen Chen,Weifang Liu,Tianyou Luo,Zhentao Yu,Min-Zhi Jiang,Jia Wen,Gaorav P. Gupta,Paola Giusti,Hongtu Zhu,Yuchen Yang,Yun Li
标识
DOI:10.1101/2022.02.20.481171
摘要

Abstract Spatial transcriptomic (ST) technologies allow researchers to examine high-quality RNA-sequencing data along with maintained two-dimensional positional information as well as a co-registered histology image. A popular use of ST omics data is to provide insights about tissue structure and spatially unique features. However, due to the technical nature unique to most ST data, the resolution varies from a diameter of 2-10 μm to 50-100 μm instead of single-cell resolution, which brings uncertainty into cell number and cell mixture within each ST spot. Motivated by the important role for spatial arrangement of cell types within a tissue in physiology and disease pathogenesis, several ST deconvolution methods have been developed and are being used to explore gene expression variation and identification of spatial domains. The aim of this work is to review state-of-the-art methods for ST deconvolution, while comparing their strengths and weaknesses. Specifically, we use four real datasets to examine the performance of eight methods across different tissues and technological platforms. Key Points Cell mixture inference is a critical step in the analysis of spatial transcriptomics (ST) data to prevent downstream analysis suffering from confounding factors at the spot level. Existing ST deconvolution methods can be classified into three groups: probabilistic-based, non-negative matrix factorization and non-negative least squares based, and other deep learning framework-based methods. We compared eight ST deconvolution methods by using two single cell level resolution datasets and two spot level resolution ST datasets. We provided practical guidelines for the choice of method under different scenarios as well as the optimal subsets of genes to use for each method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pluto应助tough采纳,获得10
1秒前
1秒前
SYLH应助健珍采纳,获得10
1秒前
zz发布了新的文献求助10
1秒前
1秒前
三条鱼完成签到,获得积分10
2秒前
合适台灯发布了新的文献求助10
2秒前
香蕉觅云应助12138的9527采纳,获得10
3秒前
SYLH应助Shxu采纳,获得10
3秒前
pluto应助小天才儿童手表采纳,获得10
4秒前
4秒前
12233发布了新的文献求助10
4秒前
零相似发布了新的文献求助10
5秒前
6秒前
fdaqin发布了新的文献求助10
6秒前
7秒前
7秒前
Amor完成签到,获得积分10
7秒前
小马完成签到,获得积分10
7秒前
Rubby应助稻草人采纳,获得10
7秒前
打工肥仔应助nickthename采纳,获得10
7秒前
renshiq完成签到,获得积分10
7秒前
神奇科研圆完成签到,获得积分10
7秒前
冷傲的山菡完成签到,获得积分10
7秒前
bxyyy应助合适台灯采纳,获得10
8秒前
搜集达人应助hkh采纳,获得10
9秒前
joyemovie完成签到,获得积分10
9秒前
9秒前
11秒前
SciGPT应助阳光的皮皮虾采纳,获得10
11秒前
上官若男应助zeno采纳,获得10
11秒前
11秒前
忧心的白竹完成签到,获得积分10
12秒前
我门牙有缝完成签到,获得积分20
12秒前
清蒸鱼发布了新的文献求助10
12秒前
joyemovie发布了新的文献求助10
13秒前
cc发布了新的文献求助10
13秒前
14秒前
空白完成签到 ,获得积分10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961392
求助须知:如何正确求助?哪些是违规求助? 3507731
关于积分的说明 11137649
捐赠科研通 3240136
什么是DOI,文献DOI怎么找? 1790806
邀请新用户注册赠送积分活动 872520
科研通“疑难数据库(出版商)”最低求助积分说明 803271