亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A comprehensive comparison on cell type composition inference for spatial transcriptomics data

反褶积 非负矩阵分解 推论 计算机科学 数据挖掘 人工智能 鉴定(生物学) 模式识别(心理学) 计算生物学 矩阵分解 算法 生物 植物 量子力学 物理 特征向量
作者
Jiawen Chen,Weifang Liu,Tianyou Luo,Zhentao Yu,Min-Zhi Jiang,Jia Wen,Gaorav P. Gupta,Paola Giusti,Hongtu Zhu,Yuchen Yang,Yun Li
标识
DOI:10.1101/2022.02.20.481171
摘要

Abstract Spatial transcriptomic (ST) technologies allow researchers to examine high-quality RNA-sequencing data along with maintained two-dimensional positional information as well as a co-registered histology image. A popular use of ST omics data is to provide insights about tissue structure and spatially unique features. However, due to the technical nature unique to most ST data, the resolution varies from a diameter of 2-10 μm to 50-100 μm instead of single-cell resolution, which brings uncertainty into cell number and cell mixture within each ST spot. Motivated by the important role for spatial arrangement of cell types within a tissue in physiology and disease pathogenesis, several ST deconvolution methods have been developed and are being used to explore gene expression variation and identification of spatial domains. The aim of this work is to review state-of-the-art methods for ST deconvolution, while comparing their strengths and weaknesses. Specifically, we use four real datasets to examine the performance of eight methods across different tissues and technological platforms. Key Points Cell mixture inference is a critical step in the analysis of spatial transcriptomics (ST) data to prevent downstream analysis suffering from confounding factors at the spot level. Existing ST deconvolution methods can be classified into three groups: probabilistic-based, non-negative matrix factorization and non-negative least squares based, and other deep learning framework-based methods. We compared eight ST deconvolution methods by using two single cell level resolution datasets and two spot level resolution ST datasets. We provided practical guidelines for the choice of method under different scenarios as well as the optimal subsets of genes to use for each method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卿言完成签到 ,获得积分10
6秒前
11秒前
16秒前
桐桐应助虚心的绿茶采纳,获得10
42秒前
44秒前
Bravo完成签到,获得积分10
47秒前
卿言发布了新的文献求助10
50秒前
52秒前
sllytn完成签到 ,获得积分10
55秒前
StonesKing发布了新的文献求助10
56秒前
李健的小迷弟应助叶逐风采纳,获得20
57秒前
1分钟前
叶逐风发布了新的文献求助20
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI6应助kjshkdg采纳,获得10
2分钟前
科研通AI6应助cmc采纳,获得10
2分钟前
2分钟前
AdamJie发布了新的文献求助10
2分钟前
CQUzc完成签到 ,获得积分10
2分钟前
科目三应助StonesKing采纳,获得10
3分钟前
隐形曼青应助直率的芫采纳,获得10
3分钟前
科研通AI6应助道天采纳,获得10
3分钟前
3分钟前
酷波er应助ukmy采纳,获得10
3分钟前
3分钟前
ukmy发布了新的文献求助10
3分钟前
3分钟前
3分钟前
StonesKing发布了新的文献求助10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463313
求助须知:如何正确求助?哪些是违规求助? 4568045
关于积分的说明 14312350
捐赠科研通 4493960
什么是DOI,文献DOI怎么找? 2462050
邀请新用户注册赠送积分活动 1450987
关于科研通互助平台的介绍 1426205