数学
粘弹性
期限(时间)
Dirichlet边界条件
有界函数
波动方程
放松(心理学)
数学分析
变量(数学)
类型(生物学)
边值问题
功能(生物学)
能量(信号处理)
上下界
物理
量子力学
热力学
心理学
社会心理学
生态学
统计
进化生物学
生物
标识
DOI:10.1080/00036811.2022.2078716
摘要
Under Dirichlet boundary conditions, we consider here a new type of viscoelastic Petrovsky wave equation involving variable sources and memory term utt+Δ2u−∫0tg(t−s)Δ2u(x,s)ds+|ut|m(.)−2ut=|u|p(.)−2u.We discuss the blow-up in finite time with arbitrary positive initial energy and suitable large initial values if p(.) and the relaxation function g satisfies some conditions. Employing a different method for higher bounded positive initial energy, not only finite time blow-up for solutions proved but also the lower and upper bounds for blowing up time are gotten.
科研通智能强力驱动
Strongly Powered by AbleSci AI