清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

PTP-STGCN: Pedestrian Trajectory Prediction Based on a Spatio-temporal Graph Convolutional Neural Network

计算机科学 行人 弹道 图形 推论 卷积神经网络 人工智能 变压器 实时计算 理论计算机科学 天文 运输工程 量子力学 物理 工程类 电压
作者
Jing Lian,Weiwei Ren,Linhui Li,Yafu Zhou,Bin Zhou
出处
期刊:Applied Intelligence [Springer Science+Business Media]
卷期号:53 (3): 2862-2878 被引量:29
标识
DOI:10.1007/s10489-022-03524-1
摘要

It is the prerequisite to ensure the safety of road users in traffic scenes for the application of autonomous vehicles. Pedestrians are the main participants in traffic scenes, and reasonable inference and prediction of their future trajectories are crucial for autonomous driving technology and road safety. Pedestrian trajectories are highly dynamic, apparently random, and complex to interact with traffic environment agents; therefore, selective modeling of spatial interaction and temporal dependence of pedestrians is necessary. To address this challenge, this paper proposes a novel pedestrian trajectory prediction model based on a spatio-temporal graph convolutional network (PTP-STGCN). Specifically, a new crowd interaction attention (CIA) function is defined to quantify the interaction information between adjacent pedestrians better. This function captures the spatial interaction features of pedestrians at each time step by a spatial graph convolution network (S-GCN). Meanwhile, the time-series motion features of each pedestrian are extracted by a temporal transformer network (T-transformer), and a spatio-temporal interaction graph of pedestrian features is constructed by the STGCN composed of the S-GCN and T-transformer. Finally, a time-extrapolator convolutional neural network (TXP-CNN) is used to predict pedestrian trajectories in the time dimension of the STGCN. The experimental results on the ETH and UCY datasets show that the proposed model achieves better performance than the state-of-the-art baselines regarding the average displacement error (ADE) and final displacement error (FDE). Due to the excellent performance in pedestrian trajectory prediction, the proposed network achieves more predictive final planned trajectory of an autonomous vehicle, while avoiding unnecessary trajectory changes and collision risk, thus providing a promising solution for practical pedestrian trajectory prediction applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww完成签到,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得10
1分钟前
滨滨发布了新的文献求助10
1分钟前
Lucas应助十分十分佳采纳,获得10
1分钟前
烟花应助童严柯采纳,获得10
1分钟前
456完成签到,获得积分10
1分钟前
hwen1998发布了新的文献求助10
2分钟前
h0jian09完成签到,获得积分10
2分钟前
2分钟前
是是是完成签到 ,获得积分10
2分钟前
2分钟前
hwen1998完成签到 ,获得积分10
2分钟前
2分钟前
童严柯发布了新的文献求助10
2分钟前
3分钟前
juan完成签到 ,获得积分10
3分钟前
两个榴莲完成签到,获得积分0
3分钟前
Benhnhk21完成签到,获得积分10
3分钟前
科研通AI5应助要减肥中蓝采纳,获得10
4分钟前
4分钟前
甜蜜海蓝发布了新的文献求助10
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
甜蜜海蓝完成签到,获得积分10
5分钟前
5分钟前
5分钟前
科研通AI5应助要减肥中蓝采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
Alisha完成签到,获得积分10
6分钟前
6分钟前
6分钟前
小张同学完成签到 ,获得积分10
6分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
激动的似狮完成签到,获得积分10
7分钟前
8分钟前
8分钟前
8分钟前
澳澳发布了新的文献求助10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5065519
求助须知:如何正确求助?哪些是违规求助? 4288108
关于积分的说明 13359637
捐赠科研通 4106884
什么是DOI,文献DOI怎么找? 2248899
邀请新用户注册赠送积分活动 1254411
关于科研通互助平台的介绍 1186179