PTP-STGCN: Pedestrian Trajectory Prediction Based on a Spatio-temporal Graph Convolutional Neural Network

计算机科学 行人 弹道 图形 推论 卷积神经网络 人工智能 变压器 实时计算 理论计算机科学 物理 量子力学 天文 电压 运输工程 工程类
作者
Jing Lian,Weiwei Ren,Linhui Li,Yafu Zhou,Bin Zhou
出处
期刊:Applied Intelligence [Springer Science+Business Media]
卷期号:53 (3): 2862-2878 被引量:29
标识
DOI:10.1007/s10489-022-03524-1
摘要

It is the prerequisite to ensure the safety of road users in traffic scenes for the application of autonomous vehicles. Pedestrians are the main participants in traffic scenes, and reasonable inference and prediction of their future trajectories are crucial for autonomous driving technology and road safety. Pedestrian trajectories are highly dynamic, apparently random, and complex to interact with traffic environment agents; therefore, selective modeling of spatial interaction and temporal dependence of pedestrians is necessary. To address this challenge, this paper proposes a novel pedestrian trajectory prediction model based on a spatio-temporal graph convolutional network (PTP-STGCN). Specifically, a new crowd interaction attention (CIA) function is defined to quantify the interaction information between adjacent pedestrians better. This function captures the spatial interaction features of pedestrians at each time step by a spatial graph convolution network (S-GCN). Meanwhile, the time-series motion features of each pedestrian are extracted by a temporal transformer network (T-transformer), and a spatio-temporal interaction graph of pedestrian features is constructed by the STGCN composed of the S-GCN and T-transformer. Finally, a time-extrapolator convolutional neural network (TXP-CNN) is used to predict pedestrian trajectories in the time dimension of the STGCN. The experimental results on the ETH and UCY datasets show that the proposed model achieves better performance than the state-of-the-art baselines regarding the average displacement error (ADE) and final displacement error (FDE). Due to the excellent performance in pedestrian trajectory prediction, the proposed network achieves more predictive final planned trajectory of an autonomous vehicle, while avoiding unnecessary trajectory changes and collision risk, thus providing a promising solution for practical pedestrian trajectory prediction applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕青应助月亮褪色了采纳,获得10
1秒前
大橙子发布了新的文献求助10
1秒前
七月星河完成签到 ,获得积分10
3秒前
always完成签到 ,获得积分10
3秒前
星辰大海应助半胱氨酸采纳,获得10
3秒前
墨旱莲完成签到,获得积分10
8秒前
scott_zip发布了新的文献求助10
8秒前
奥利给完成签到,获得积分10
8秒前
明明完成签到 ,获得积分10
9秒前
芹菜自愿内卷完成签到,获得积分10
9秒前
zokor完成签到 ,获得积分0
12秒前
努力退休小博士完成签到 ,获得积分10
13秒前
橙子完成签到,获得积分10
14秒前
陈补天完成签到 ,获得积分10
15秒前
CipherSage应助慧灰huihui采纳,获得10
16秒前
乐观健柏完成签到,获得积分10
17秒前
19秒前
CodeCraft应助大橙子采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
jeeya完成签到,获得积分10
21秒前
23秒前
科目三应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
伦语发布了新的文献求助10
23秒前
顾矜应助科研通管家采纳,获得10
23秒前
xuzj应助科研通管家采纳,获得10
23秒前
xuzj应助科研通管家采纳,获得10
23秒前
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
丘比特应助科研通管家采纳,获得10
24秒前
yull完成签到,获得积分10
24秒前
小巧书雪完成签到,获得积分10
27秒前
大大怪将军完成签到,获得积分10
28秒前
哈哈哈完成签到 ,获得积分0
28秒前
小怪完成签到,获得积分10
29秒前
爱吃泡芙完成签到,获得积分10
30秒前
白桃战士完成签到,获得积分10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022