PTP-STGCN: Pedestrian Trajectory Prediction Based on a Spatio-temporal Graph Convolutional Neural Network

计算机科学 行人 弹道 图形 推论 卷积神经网络 人工智能 变压器 实时计算 理论计算机科学 天文 运输工程 量子力学 物理 工程类 电压
作者
Jing Lian,Weiwei Ren,Linhui Li,Yafu Zhou,Bin Zhou
出处
期刊:Applied Intelligence [Springer Science+Business Media]
卷期号:53 (3): 2862-2878 被引量:29
标识
DOI:10.1007/s10489-022-03524-1
摘要

It is the prerequisite to ensure the safety of road users in traffic scenes for the application of autonomous vehicles. Pedestrians are the main participants in traffic scenes, and reasonable inference and prediction of their future trajectories are crucial for autonomous driving technology and road safety. Pedestrian trajectories are highly dynamic, apparently random, and complex to interact with traffic environment agents; therefore, selective modeling of spatial interaction and temporal dependence of pedestrians is necessary. To address this challenge, this paper proposes a novel pedestrian trajectory prediction model based on a spatio-temporal graph convolutional network (PTP-STGCN). Specifically, a new crowd interaction attention (CIA) function is defined to quantify the interaction information between adjacent pedestrians better. This function captures the spatial interaction features of pedestrians at each time step by a spatial graph convolution network (S-GCN). Meanwhile, the time-series motion features of each pedestrian are extracted by a temporal transformer network (T-transformer), and a spatio-temporal interaction graph of pedestrian features is constructed by the STGCN composed of the S-GCN and T-transformer. Finally, a time-extrapolator convolutional neural network (TXP-CNN) is used to predict pedestrian trajectories in the time dimension of the STGCN. The experimental results on the ETH and UCY datasets show that the proposed model achieves better performance than the state-of-the-art baselines regarding the average displacement error (ADE) and final displacement error (FDE). Due to the excellent performance in pedestrian trajectory prediction, the proposed network achieves more predictive final planned trajectory of an autonomous vehicle, while avoiding unnecessary trajectory changes and collision risk, thus providing a promising solution for practical pedestrian trajectory prediction applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
伯赏觅翠完成签到 ,获得积分10
1秒前
1秒前
wzc完成签到,获得积分10
1秒前
双楠应助朱马大采纳,获得10
2秒前
2秒前
hyf发布了新的文献求助10
3秒前
幸福大白发布了新的文献求助10
4秒前
4秒前
zyw发布了新的文献求助10
4秒前
五六七发布了新的文献求助10
6秒前
闾丘剑封发布了新的文献求助10
6秒前
可爱的函函应助小晓采纳,获得10
9秒前
Owen应助SciEngineerX采纳,获得10
9秒前
幸福大白发布了新的文献求助30
10秒前
内向寒云完成签到,获得积分10
12秒前
CipherSage应助DC采纳,获得10
12秒前
淡然的花卷完成签到,获得积分10
13秒前
15秒前
无语的不言完成签到,获得积分20
16秒前
16秒前
慕青应助lzx采纳,获得10
17秒前
17秒前
17秒前
Orange应助欧耶采纳,获得10
18秒前
18秒前
18秒前
yyyyyyy完成签到,获得积分10
20秒前
SciEngineerX发布了新的文献求助10
21秒前
木木完成签到,获得积分10
21秒前
啧啧啧发布了新的文献求助10
22秒前
研友_VZG7GZ应助33采纳,获得30
22秒前
yyyyyyy发布了新的文献求助10
23秒前
23秒前
禹代秋发布了新的文献求助10
24秒前
杰2580发布了新的文献求助10
25秒前
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989450
求助须知:如何正确求助?哪些是违规求助? 3531621
关于积分的说明 11254315
捐赠科研通 3270207
什么是DOI,文献DOI怎么找? 1804928
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809176