PTP-STGCN: Pedestrian Trajectory Prediction Based on a Spatio-temporal Graph Convolutional Neural Network

计算机科学 行人 弹道 图形 推论 卷积神经网络 人工智能 变压器 实时计算 理论计算机科学 天文 运输工程 量子力学 物理 工程类 电压
作者
Jing Lian,Weiwei Ren,Linhui Li,Yafu Zhou,Bin Zhou
出处
期刊:Applied Intelligence [Springer Science+Business Media]
卷期号:53 (3): 2862-2878 被引量:29
标识
DOI:10.1007/s10489-022-03524-1
摘要

It is the prerequisite to ensure the safety of road users in traffic scenes for the application of autonomous vehicles. Pedestrians are the main participants in traffic scenes, and reasonable inference and prediction of their future trajectories are crucial for autonomous driving technology and road safety. Pedestrian trajectories are highly dynamic, apparently random, and complex to interact with traffic environment agents; therefore, selective modeling of spatial interaction and temporal dependence of pedestrians is necessary. To address this challenge, this paper proposes a novel pedestrian trajectory prediction model based on a spatio-temporal graph convolutional network (PTP-STGCN). Specifically, a new crowd interaction attention (CIA) function is defined to quantify the interaction information between adjacent pedestrians better. This function captures the spatial interaction features of pedestrians at each time step by a spatial graph convolution network (S-GCN). Meanwhile, the time-series motion features of each pedestrian are extracted by a temporal transformer network (T-transformer), and a spatio-temporal interaction graph of pedestrian features is constructed by the STGCN composed of the S-GCN and T-transformer. Finally, a time-extrapolator convolutional neural network (TXP-CNN) is used to predict pedestrian trajectories in the time dimension of the STGCN. The experimental results on the ETH and UCY datasets show that the proposed model achieves better performance than the state-of-the-art baselines regarding the average displacement error (ADE) and final displacement error (FDE). Due to the excellent performance in pedestrian trajectory prediction, the proposed network achieves more predictive final planned trajectory of an autonomous vehicle, while avoiding unnecessary trajectory changes and collision risk, thus providing a promising solution for practical pedestrian trajectory prediction applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒皮带完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
万信心发布了新的文献求助10
刚刚
刚刚
戚薇发布了新的文献求助10
刚刚
cwy完成签到,获得积分10
刚刚
taff完成签到,获得积分20
1秒前
受伤丹妗发布了新的文献求助10
1秒前
1秒前
犹豫的晓兰完成签到,获得积分20
2秒前
3秒前
3秒前
英俊的铭应助JUAN采纳,获得10
3秒前
3秒前
yangben完成签到,获得积分10
3秒前
科研通AI2S应助被动科研采纳,获得10
3秒前
3秒前
4秒前
快乐旭尧完成签到,获得积分10
4秒前
5秒前
赘婿应助灰灰采纳,获得10
5秒前
jstagey发布了新的文献求助10
6秒前
善学以致用应助戚薇采纳,获得10
6秒前
低语yaa发布了新的文献求助10
6秒前
清脆愫完成签到 ,获得积分0
6秒前
jinyu完成签到,获得积分10
6秒前
NATURECATCHER完成签到,获得积分10
7秒前
Ainhoa发布了新的文献求助10
8秒前
LLY完成签到,获得积分20
8秒前
小罗在无锡完成签到 ,获得积分10
8秒前
zwy109发布了新的文献求助10
8秒前
机灵紫萱完成签到,获得积分10
8秒前
酷波er应助後知後孓采纳,获得10
9秒前
可爱的函函应助受伤丹妗采纳,获得10
9秒前
9秒前
敏敏发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
丘比特应助wsgdhz采纳,获得10
12秒前
Hoyshin应助Sui采纳,获得20
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709