材料科学
透射率
电极
光电子学
功率密度
纳米技术
锌
碱性电池
化学工程
冶金
化学
功率(物理)
物理
物理化学
量子力学
工程类
电解质
作者
Tianwei Chen,Zhengwen Shuang,Jinlong Hu,Yanli Zhao,Donghai Wei,Jinghua Ye,Guanhua Zhang,Huigao Duan
出处
期刊:Small
[Wiley]
日期:2022-05-13
卷期号:18 (24)
被引量:36
标识
DOI:10.1002/smll.202201628
摘要
Flexible transparent energy supplies are extremely essential to the fast-growing flexible electronic systems. However, the general developed flexible transparent energy storage devices are severely limited by the challenges of low energy density, safety issues, and/or poor compatibility. In this work, a freestanding 3D hierarchical metallic micromesh with remarkble optoelectronic properties (T = 89.59% and Rs = 0.23 Ω sq-1 ) and super-flexibility is designed and manufactured for flexible transparent alkaline zinc batteries. The 3D Ni micromesh supported Cu(OH)2 @NiCo bimetallic hydroxide flexible transparent electrode (3D NM@Cu(OH)2 @NiCo BH) is obtained by a combination of photolithography, chemical etching, and electrodeposition. The negative electrode is constructed by electrodeposition of electrochemically active zinc on the surface of Ni@Cu micromesh (Ni@Cu@Zn MM). The metallic micromesh with 3D hierarchical nanoarchitecture can not only ensure low sheet resistance, but also realize high mass loading of active materials and short electron/ion transmission path, which can guarantee high energy density and high-rate capability of the transparent devices. The flexible transparent 3D NM@Cu(OH)2 @NiCo BH electrode realizes a specific capacity of 66.03 μAh cm-2 at 1 mA cm-2 with a transmittance of 63%. Furthermore, the assembled solid-state NiCo-Zn alkaline battery exhibits a desirable energy density/power density of 35.89 μWh cm-2 /2000.26 μW cm-2 with a transmittance of 54.34%.
科研通智能强力驱动
Strongly Powered by AbleSci AI