已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The quantitative application of channel importance in movement intention decoding

解码方法 计算机科学 频道(广播) 人工智能 加权 运动表象 模式识别(心理学) 脑电图 卷积神经网络 计算机视觉 算法
作者
Linlin Wang,Mingai Li
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier BV]
标识
DOI:10.1016/j.bbe.2022.05.002
摘要

• By using random forest algorithm, the channel importance is calculated in frequency domain to quantify the contribution of each electrode. • A channel importance based imaging method, called CIBI, is proposed to generate two main band images for motor imagery (MI) EEG. • A dual branch fusion convolutional neural network is developed to match with the characteristics of two MI images for decoding movement intention. The complex brain network consists of multiple collaborative regions, which can be activated to varying degrees by motor imagery (MI) and the induced electroencephalogram (EEG) recorded by an array of scalp electrodes is usually decoded for driving rehabilitation system. Either all channels or partially selected channels are equally applied to recognize movement intention, which may be incompatible with the individual differences of channels from different locations. In this paper, a channel importance based imaging method is proposed, denoted as CIBI. For each electrode of MI-EEG, the power over 8–30 Hz band is calculated from discrete Fourier spectrum and input to random forest algorithm (RF) to quantify its contribution, namely channel importance (CI); Then, CI is used for weighting the powers of α and β rhythms, which are interpolated to a 32 × 32 grid by using Clough-Tocher method respectively, generating two main band images with time-frequency-space information. In addition, a dual branch fusion convolutional neural network (DBFCNN) is developed to match with the characteristic of two MI images, realizing the extraction, fusion and classification of comprehensive features. Extensive experiments are conducted based on two public datasets with four classes of MI-EEG, the relatively higher average accuracies are obtained, and the improvements achieve 23.95 % and 25.14 % respectively when using channel importance, their statistical analysis are also performed by Kappa value, confusion matrix and receiver operating characteristic. Experiment results show that the personalized channel importance is helpful to enhance inter-class separability as well as the proposed method has the outstanding decoding ability for multiple MI tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
dkjg完成签到 ,获得积分10
2秒前
4秒前
li完成签到,获得积分10
4秒前
想飞的小猴子完成签到,获得积分10
5秒前
yziy发布了新的文献求助10
5秒前
嘿嘿呼完成签到,获得积分20
7秒前
今后应助陆旻采纳,获得10
7秒前
7秒前
ww完成签到,获得积分20
8秒前
theo完成签到,获得积分10
9秒前
小小鹅发布了新的文献求助10
9秒前
movoandy发布了新的文献求助10
9秒前
科研通AI6应助wt采纳,获得10
10秒前
11秒前
燕尔蓝发布了新的文献求助10
11秒前
11秒前
渔渔完成签到 ,获得积分10
12秒前
13秒前
嘛吉发布了新的文献求助10
15秒前
活泼的若血完成签到 ,获得积分10
17秒前
学术小白w完成签到,获得积分10
18秒前
tangtang关注了科研通微信公众号
18秒前
19秒前
科研通AI6应助凶狠的源智采纳,获得10
20秒前
22秒前
传奇3应助hygge采纳,获得10
24秒前
24秒前
25秒前
25秒前
caoyonggang发布了新的文献求助10
26秒前
馆长给开心的访卉的求助进行了留言
26秒前
puppy发布了新的文献求助10
28秒前
科研通AI6应助嘛吉采纳,获得10
30秒前
30秒前
科研通AI6应助优雅的帅哥采纳,获得10
30秒前
小小牛马完成签到 ,获得积分10
32秒前
32秒前
33秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126032
求助须知:如何正确求助?哪些是违规求助? 4329689
关于积分的说明 13491683
捐赠科研通 4164660
什么是DOI,文献DOI怎么找? 2283026
邀请新用户注册赠送积分活动 1284135
关于科研通互助平台的介绍 1223522