The quantitative application of channel importance in movement intention decoding

解码方法 计算机科学 频道(广播) 人工智能 加权 运动表象 模式识别(心理学) 脑电图 卷积神经网络 计算机视觉 算法
作者
Linlin Wang,Mingai Li
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier BV]
标识
DOI:10.1016/j.bbe.2022.05.002
摘要

• By using random forest algorithm, the channel importance is calculated in frequency domain to quantify the contribution of each electrode. • A channel importance based imaging method, called CIBI, is proposed to generate two main band images for motor imagery (MI) EEG. • A dual branch fusion convolutional neural network is developed to match with the characteristics of two MI images for decoding movement intention. The complex brain network consists of multiple collaborative regions, which can be activated to varying degrees by motor imagery (MI) and the induced electroencephalogram (EEG) recorded by an array of scalp electrodes is usually decoded for driving rehabilitation system. Either all channels or partially selected channels are equally applied to recognize movement intention, which may be incompatible with the individual differences of channels from different locations. In this paper, a channel importance based imaging method is proposed, denoted as CIBI. For each electrode of MI-EEG, the power over 8–30 Hz band is calculated from discrete Fourier spectrum and input to random forest algorithm (RF) to quantify its contribution, namely channel importance (CI); Then, CI is used for weighting the powers of α and β rhythms, which are interpolated to a 32 × 32 grid by using Clough-Tocher method respectively, generating two main band images with time-frequency-space information. In addition, a dual branch fusion convolutional neural network (DBFCNN) is developed to match with the characteristic of two MI images, realizing the extraction, fusion and classification of comprehensive features. Extensive experiments are conducted based on two public datasets with four classes of MI-EEG, the relatively higher average accuracies are obtained, and the improvements achieve 23.95 % and 25.14 % respectively when using channel importance, their statistical analysis are also performed by Kappa value, confusion matrix and receiver operating characteristic. Experiment results show that the personalized channel importance is helpful to enhance inter-class separability as well as the proposed method has the outstanding decoding ability for multiple MI tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理问柳完成签到,获得积分10
2秒前
坚强的嚣完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
gxzsdf完成签到 ,获得积分10
7秒前
我思故我在完成签到,获得积分10
9秒前
10秒前
阿帕奇完成签到 ,获得积分10
13秒前
Conner完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
17秒前
zhang完成签到 ,获得积分10
18秒前
wol007完成签到 ,获得积分10
20秒前
123完成签到 ,获得积分10
21秒前
Justtry完成签到 ,获得积分20
21秒前
naiyouqiu1989完成签到,获得积分10
23秒前
沿途有你完成签到 ,获得积分10
23秒前
花生四烯酸完成签到 ,获得积分10
25秒前
科科通通完成签到,获得积分10
25秒前
WYK完成签到 ,获得积分10
28秒前
28秒前
学海行舟完成签到 ,获得积分10
32秒前
黑眼圈完成签到 ,获得积分10
35秒前
幸福的羿完成签到 ,获得积分10
36秒前
量子星尘发布了新的文献求助10
37秒前
霍明轩完成签到 ,获得积分10
46秒前
游艺完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
50秒前
是盐的学术号吖完成签到 ,获得积分10
51秒前
空2完成签到 ,获得积分0
56秒前
烂漫的从彤完成签到,获得积分10
56秒前
Wang完成签到 ,获得积分20
56秒前
小心翼翼完成签到 ,获得积分10
57秒前
Manzia完成签到,获得积分10
1分钟前
小丸子和zz完成签到 ,获得积分10
1分钟前
1分钟前
在水一方应助灵巧的傲柏采纳,获得10
1分钟前
Dr.Tang完成签到 ,获得积分10
1分钟前
swordshine完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613016
求助须知:如何正确求助?哪些是违规求助? 4018011
关于积分的说明 12436990
捐赠科研通 3700338
什么是DOI,文献DOI怎么找? 2040716
邀请新用户注册赠送积分活动 1073470
科研通“疑难数据库(出版商)”最低求助积分说明 957104