The quantitative application of channel importance in movement intention decoding

解码方法 计算机科学 频道(广播) 人工智能 加权 运动表象 模式识别(心理学) 脑电图 卷积神经网络 计算机视觉 算法
作者
Linlin Wang,Mingai Li
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier]
标识
DOI:10.1016/j.bbe.2022.05.002
摘要

• By using random forest algorithm, the channel importance is calculated in frequency domain to quantify the contribution of each electrode. • A channel importance based imaging method, called CIBI, is proposed to generate two main band images for motor imagery (MI) EEG. • A dual branch fusion convolutional neural network is developed to match with the characteristics of two MI images for decoding movement intention. The complex brain network consists of multiple collaborative regions, which can be activated to varying degrees by motor imagery (MI) and the induced electroencephalogram (EEG) recorded by an array of scalp electrodes is usually decoded for driving rehabilitation system. Either all channels or partially selected channels are equally applied to recognize movement intention, which may be incompatible with the individual differences of channels from different locations. In this paper, a channel importance based imaging method is proposed, denoted as CIBI. For each electrode of MI-EEG, the power over 8–30 Hz band is calculated from discrete Fourier spectrum and input to random forest algorithm (RF) to quantify its contribution, namely channel importance (CI); Then, CI is used for weighting the powers of α and β rhythms, which are interpolated to a 32 × 32 grid by using Clough-Tocher method respectively, generating two main band images with time-frequency-space information. In addition, a dual branch fusion convolutional neural network (DBFCNN) is developed to match with the characteristic of two MI images, realizing the extraction, fusion and classification of comprehensive features. Extensive experiments are conducted based on two public datasets with four classes of MI-EEG, the relatively higher average accuracies are obtained, and the improvements achieve 23.95 % and 25.14 % respectively when using channel importance, their statistical analysis are also performed by Kappa value, confusion matrix and receiver operating characteristic. Experiment results show that the personalized channel importance is helpful to enhance inter-class separability as well as the proposed method has the outstanding decoding ability for multiple MI tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眠眠清完成签到 ,获得积分10
1秒前
apckkk完成签到 ,获得积分10
1秒前
飞得更高发布了新的文献求助10
2秒前
高高的梦曼完成签到 ,获得积分10
3秒前
诚心代芙完成签到 ,获得积分10
3秒前
甜甜圈完成签到 ,获得积分10
5秒前
景茶茶完成签到 ,获得积分10
5秒前
znn完成签到 ,获得积分10
5秒前
jun完成签到 ,获得积分10
6秒前
充电宝应助cbb采纳,获得10
7秒前
柒月完成签到 ,获得积分10
9秒前
内向东蒽完成签到 ,获得积分10
10秒前
pp完成签到 ,获得积分10
11秒前
weng完成签到,获得积分10
18秒前
大头完成签到 ,获得积分10
22秒前
方方完成签到 ,获得积分10
31秒前
i2stay完成签到,获得积分10
32秒前
郑雅柔完成签到 ,获得积分10
36秒前
光亮的自行车完成签到 ,获得积分10
38秒前
WXM完成签到 ,获得积分10
48秒前
《子非鱼》完成签到,获得积分10
52秒前
future完成签到 ,获得积分10
52秒前
小庄完成签到 ,获得积分10
55秒前
包子牛奶完成签到,获得积分10
1分钟前
小梦完成签到,获得积分10
1分钟前
不回首完成签到 ,获得积分10
1分钟前
水沝完成签到 ,获得积分10
1分钟前
caitSith完成签到,获得积分10
1分钟前
MAKEYF完成签到 ,获得积分10
1分钟前
wBw完成签到,获得积分10
1分钟前
平常雨泽完成签到 ,获得积分10
1分钟前
美好灵寒完成签到 ,获得积分10
1分钟前
1分钟前
友好亚男完成签到 ,获得积分10
1分钟前
哈哈哈哈完成签到 ,获得积分10
1分钟前
tzy6665完成签到,获得积分10
1分钟前
Yimi刘博完成签到 ,获得积分10
1分钟前
我就想看看文献完成签到 ,获得积分10
1分钟前
唯梦完成签到 ,获得积分10
1分钟前
madison完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155031
求助须知:如何正确求助?哪些是违规求助? 2805746
关于积分的说明 7865931
捐赠科研通 2464038
什么是DOI,文献DOI怎么找? 1311698
科研通“疑难数据库(出版商)”最低求助积分说明 629734
版权声明 601862