The quantitative application of channel importance in movement intention decoding

解码方法 计算机科学 频道(广播) 人工智能 加权 运动表象 模式识别(心理学) 脑电图 卷积神经网络 计算机视觉 算法
作者
Linlin Wang,Mingai Li
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier]
标识
DOI:10.1016/j.bbe.2022.05.002
摘要

• By using random forest algorithm, the channel importance is calculated in frequency domain to quantify the contribution of each electrode. • A channel importance based imaging method, called CIBI, is proposed to generate two main band images for motor imagery (MI) EEG. • A dual branch fusion convolutional neural network is developed to match with the characteristics of two MI images for decoding movement intention. The complex brain network consists of multiple collaborative regions, which can be activated to varying degrees by motor imagery (MI) and the induced electroencephalogram (EEG) recorded by an array of scalp electrodes is usually decoded for driving rehabilitation system. Either all channels or partially selected channels are equally applied to recognize movement intention, which may be incompatible with the individual differences of channels from different locations. In this paper, a channel importance based imaging method is proposed, denoted as CIBI. For each electrode of MI-EEG, the power over 8–30 Hz band is calculated from discrete Fourier spectrum and input to random forest algorithm (RF) to quantify its contribution, namely channel importance (CI); Then, CI is used for weighting the powers of α and β rhythms, which are interpolated to a 32 × 32 grid by using Clough-Tocher method respectively, generating two main band images with time-frequency-space information. In addition, a dual branch fusion convolutional neural network (DBFCNN) is developed to match with the characteristic of two MI images, realizing the extraction, fusion and classification of comprehensive features. Extensive experiments are conducted based on two public datasets with four classes of MI-EEG, the relatively higher average accuracies are obtained, and the improvements achieve 23.95 % and 25.14 % respectively when using channel importance, their statistical analysis are also performed by Kappa value, confusion matrix and receiver operating characteristic. Experiment results show that the personalized channel importance is helpful to enhance inter-class separability as well as the proposed method has the outstanding decoding ability for multiple MI tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaobai应助科研通管家采纳,获得10
2秒前
lilivite应助科研通管家采纳,获得20
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
xiaobai应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
内向千筹应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
酷酷盼秋应助duohao2023采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
大个应助苏乘风采纳,获得20
4秒前
顺利完成签到,获得积分10
5秒前
笨笨从凝完成签到,获得积分10
5秒前
7秒前
Sakura_Chloe完成签到,获得积分20
7秒前
7秒前
柏梦岚发布了新的文献求助10
8秒前
fff关闭了fff文献求助
9秒前
9秒前
天天快乐应助有点儿小库采纳,获得10
10秒前
周小鱼完成签到,获得积分10
10秒前
科研通AI6应助孤独的万言采纳,获得10
11秒前
Lucky完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
科研通AI6应助lihaifeng采纳,获得10
15秒前
翻翻发布了新的文献求助10
15秒前
有点儿小库完成签到,获得积分10
15秒前
bsknkd完成签到 ,获得积分10
17秒前
隐形曼青应助后海采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453696
求助须知:如何正确求助?哪些是违规求助? 4561241
关于积分的说明 14281357
捐赠科研通 4485225
什么是DOI,文献DOI怎么找? 2456535
邀请新用户注册赠送积分活动 1447276
关于科研通互助平台的介绍 1422687