The quantitative application of channel importance in movement intention decoding

解码方法 计算机科学 频道(广播) 人工智能 加权 运动表象 模式识别(心理学) 脑电图 卷积神经网络 计算机视觉 算法
作者
Linlin Wang,Mingai Li
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier]
标识
DOI:10.1016/j.bbe.2022.05.002
摘要

• By using random forest algorithm, the channel importance is calculated in frequency domain to quantify the contribution of each electrode. • A channel importance based imaging method, called CIBI, is proposed to generate two main band images for motor imagery (MI) EEG. • A dual branch fusion convolutional neural network is developed to match with the characteristics of two MI images for decoding movement intention. The complex brain network consists of multiple collaborative regions, which can be activated to varying degrees by motor imagery (MI) and the induced electroencephalogram (EEG) recorded by an array of scalp electrodes is usually decoded for driving rehabilitation system. Either all channels or partially selected channels are equally applied to recognize movement intention, which may be incompatible with the individual differences of channels from different locations. In this paper, a channel importance based imaging method is proposed, denoted as CIBI. For each electrode of MI-EEG, the power over 8–30 Hz band is calculated from discrete Fourier spectrum and input to random forest algorithm (RF) to quantify its contribution, namely channel importance (CI); Then, CI is used for weighting the powers of α and β rhythms, which are interpolated to a 32 × 32 grid by using Clough-Tocher method respectively, generating two main band images with time-frequency-space information. In addition, a dual branch fusion convolutional neural network (DBFCNN) is developed to match with the characteristic of two MI images, realizing the extraction, fusion and classification of comprehensive features. Extensive experiments are conducted based on two public datasets with four classes of MI-EEG, the relatively higher average accuracies are obtained, and the improvements achieve 23.95 % and 25.14 % respectively when using channel importance, their statistical analysis are also performed by Kappa value, confusion matrix and receiver operating characteristic. Experiment results show that the personalized channel importance is helpful to enhance inter-class separability as well as the proposed method has the outstanding decoding ability for multiple MI tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助波波玛奇朵采纳,获得10
刚刚
戏言121完成签到,获得积分10
刚刚
迷人的映雁完成签到,获得积分10
1秒前
1秒前
美丽的之双完成签到,获得积分10
2秒前
阿会完成签到,获得积分10
2秒前
wqm完成签到,获得积分10
3秒前
戏言121发布了新的文献求助10
4秒前
4秒前
5秒前
优雅的流沙完成签到 ,获得积分10
6秒前
猫的海完成签到,获得积分10
6秒前
6秒前
Eason Liu完成签到,获得积分0
7秒前
Wendy1204完成签到,获得积分20
7秒前
Hello应助654采纳,获得10
7秒前
咩咩羊完成签到,获得积分10
7秒前
11秒前
lianqing完成签到,获得积分10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
12秒前
RC_Wang应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
hh应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得30
12秒前
12秒前
Leif应助科研通管家采纳,获得20
12秒前
12秒前
13秒前
13秒前
14秒前
14秒前
忘羡222发布了新的文献求助20
15秒前
丰富猕猴桃完成签到,获得积分10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824