Performance prediction and design optimization of turbine blade profile with deep learning method

计算机科学 刀(考古) 涡轮叶片 涡轮机 工程类 海洋工程 机械工程
作者
Qiuwan Du,Yunzhu Li,Like Yang,Tianyuan Liu,Di Zhang,Yonghui Xie
出处
期刊:Energy [Elsevier BV]
卷期号:254: 124351-124351 被引量:45
标识
DOI:10.1016/j.energy.2022.124351
摘要

Aerodynamic design optimization of the blade profile is a critical approach to improve performance of turbomachinery. This paper aims to achieve the performance prediction with deep learning method and realize fast design optimization of a turbine blade. Two parameterization methods based on geometric relationships (PGR) and neural network (PNN) are proposed, which can generate smooth and complete blade profiles. A dual convolutional neural network (DCNN) is constructed to predict the physical fields and aerodynamic performance. The implementations of DCNN are accomplished based on the datasets generated by the two parameterization methods respectively, which are called PGR-DCNN and PNN-DCNN model. Results show that the prediction accuracy increases and then keeps stable as train size increases. The two models can offer the detailed physical field distribution within 3 ms and accurately predict the aerodynamic performance. The prediction errors of performance parameters for 99% samples in validation set are less than 0.5% with PGR-DCNN model, which are significantly better than conventional machine learning methods. Finally, based on the accurate predictive models, the gradient-based design optimization for rotor blade profile is completed in 38 s. The efficiency of the two optimal blades reaches 89.29% and 88.92% respectively, which verifies the feasibility of our method. • Two parameterization methods based on geometric relationships and neural network are proposed. • The DCNN model is constructed to reconstruct physical fields and predict performance. • High prediction accuracy and fast calculation speed are achieved by DCNN model. • The gradient descent method is adopted to conduct the optimization of the turbine blade profile.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微风完成签到,获得积分10
1秒前
1秒前
tiantiantian发布了新的文献求助10
1秒前
12完成签到,获得积分20
2秒前
打打应助好滴捏采纳,获得10
3秒前
7秒前
Luki发布了新的文献求助10
7秒前
兔雳完成签到,获得积分10
8秒前
9秒前
神勇的荟完成签到 ,获得积分10
9秒前
10秒前
xx完成签到,获得积分10
13秒前
魔幻的语堂完成签到,获得积分10
13秒前
沈达发布了新的文献求助10
13秒前
15秒前
15秒前
16秒前
曲奇发布了新的文献求助100
17秒前
muyassar完成签到,获得积分10
17秒前
俭朴八宝粥完成签到,获得积分10
18秒前
诺诺发布了新的文献求助10
19秒前
打打应助爱学习的曼卉采纳,获得10
20秒前
好滴捏发布了新的文献求助10
20秒前
852应助Emma采纳,获得10
21秒前
hwq123完成签到,获得积分10
23秒前
26秒前
mahliya完成签到,获得积分10
27秒前
畅快成风完成签到,获得积分10
27秒前
28秒前
28秒前
CipherSage应助爱学习的曼卉采纳,获得10
29秒前
31秒前
丘比特应助冷静帅哥采纳,获得10
33秒前
颜倾发布了新的文献求助10
34秒前
英俊的铭应助一只呆果蝇采纳,获得10
35秒前
畅快成风发布了新的文献求助10
35秒前
xia发布了新的文献求助10
36秒前
orixero应助自觉的凛采纳,获得10
36秒前
hdmjsls关注了科研通微信公众号
37秒前
leo瀚发布了新的文献求助10
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993490
求助须知:如何正确求助?哪些是违规求助? 3534168
关于积分的说明 11264831
捐赠科研通 3274008
什么是DOI,文献DOI怎么找? 1806220
邀请新用户注册赠送积分活动 883055
科研通“疑难数据库(出版商)”最低求助积分说明 809662