插层(化学)
层状结构
聚苯胺
钒
锌
电化学
材料科学
无机化学
化学工程
阴极
水溶液
化学
电极
工程类
聚合物
有机化学
冶金
复合材料
物理化学
聚合
作者
Ziyi Feng,Yifu Zhang,Yunfeng Zhao,Jingjing Sun,Yanyan Liu,Hanmei Jiang,Miao Cui,Tao Hu,Changgong Meng
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2022-01-01
卷期号:14 (24): 8776-8788
被引量:34
摘要
Possessing a 2D zinc-ion transport channel, layered vanadium oxides have become good candidates as cathode materials for aqueous rechargeable zinc-ion batteries (ARZIBs). Tuning the lamellar structure of vanadium oxides to enhance their zinc-ion storage is a great challenge. In the present study, we proposed and investigated a "co-intercalation mechanism" in which Mg2+ and polyaniline (PANI) were simultaneously intercalated into the layers of hydrated V2O5 (MgVOH/PANI) by a one-step hydrothermal method. Inorganic-organic co-intercalation could tune the layer spacing of VOH, and this combination played a synergistic role in enhancing the zinc-ion storage in MgVOH/PANI. It showed an extremely large layer spacing of 14.2 Å, specific capacity of up to 412 mA h g-1 at 0.1 A g-1, and the capacity retention rate could reach 98% after 1000 cycles. PANI itself has a zinc-storage capacity, and Mg2+ intercalated with PANI can improve the conductivity of the material and enhance its stability. Further first-principles calculations clearly revealed the structural changes and improved electrochemical performance of vanadium oxides. This method of inorganic and organic co-regulation of the VOH structure opens a new strategy for tuning the lamellar structure of layered materials to boost their electrochemical performances.
科研通智能强力驱动
Strongly Powered by AbleSci AI