Clinical Evaluation of the Automatic Coronary Artery Disease Reporting and Data System (CAD-RADS) in Coronary Computed Tomography Angiography Using Convolutional Neural Networks

医学 冠状动脉疾病 计算机辅助设计 放射科 计算机断层血管造影 分级(工程) 置信区间 血管造影 内科学 冠状动脉造影 心脏病学 心肌梗塞 土木工程 工程制图 工程类
作者
Zengfa Huang,Jing Xiao,Xi Wang,Zuoqin Li,Ning Guo,Yun Hu,Xiang Li,Xiang Wang
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (4): 698-706 被引量:7
标识
DOI:10.1016/j.acra.2022.05.015
摘要

The coronary artery disease reporting and data system (CAD-RADS™) was recently introduced to standardise reporting. We aimed to evaluate the utility of an automatic postprocessing and reporting system based on CAD-RADS™ in suspected coronary artery disease (CAD) patients.Clinical evaluation was performed in 346 patients who underwent coronary computed tomography angiography (CCTA). We compared deep learning (DL)-based CCTA with human readers for evaluation of CAD-RADS™ with commercially-available automated segmentation and manual postprocessing in a retrospective validation cohort.Compared with invasive coronary angiography, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the DL model for diagnosis of CAD were 79.02%, 86.52%, 89.50%, 73.94%, and 82.08%, respectively. There was no significant difference between the DL-based and the reader-based CAD-RADS™ grading of CCTA results. Consistency testing showed that the Kappa value between the model and the readers was 0.775 (95% confidence interval [CI]: 0.728-0.823, p < 0.001), 0.802 (95% CI: 0.756-0.847, p < 0.001), and 0.796 (95% CI: 0.750-0.843, p < 0.001), respectively. This system reduces the time taken from 14.97 ± 1.80 min to 5.02 ± 0.8 min (p < 0.001).The standardised reporting of DL-based CAD-RADS™ in CCTA can accurately and rapidly evaluate suspected CAD patients, and has good consistency with grading by radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助善良过客采纳,获得10
刚刚
现实的曼荷完成签到,获得积分10
刚刚
刚刚
1秒前
zyyyy完成签到,获得积分10
1秒前
dd完成签到,获得积分20
1秒前
1秒前
混子发布了新的文献求助10
1秒前
HYG完成签到,获得积分10
2秒前
二橦完成签到 ,获得积分10
2秒前
熊博士完成签到,获得积分10
3秒前
哲000发布了新的文献求助10
3秒前
丰富的世界完成签到 ,获得积分10
3秒前
4秒前
4秒前
路漫漫其修远兮完成签到,获得积分10
4秒前
GGZ发布了新的文献求助10
4秒前
啦啦啦发布了新的文献求助10
4秒前
5秒前
阿坤完成签到,获得积分10
6秒前
dd发布了新的文献求助10
7秒前
桐桐应助小智采纳,获得10
7秒前
九川完成签到,获得积分10
7秒前
混子完成签到,获得积分10
7秒前
7秒前
8秒前
Wang完成签到,获得积分10
8秒前
星辰大海应助Ll采纳,获得10
8秒前
Jasper应助妮儿采纳,获得10
9秒前
tododoto完成签到,获得积分10
9秒前
9秒前
淙淙柔水完成签到,获得积分0
9秒前
杳鸢应助mc1220采纳,获得10
9秒前
rosa完成签到,获得积分10
9秒前
郑小七发布了新的文献求助10
10秒前
Tianxu Li完成签到,获得积分10
11秒前
11秒前
九川发布了新的文献求助10
12秒前
Lucas应助无限的隶采纳,获得10
12秒前
胡雅琴完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759