已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MVFStain: Multiple virtual functional stain histopathology images generation based on specific domain mapping

污渍 染色 人工智能 H&E染色 计算机科学 模式识别(心理学) 病理 医学
作者
Ranran Zhang,Yankun Cao,Yujun Li,Zhi Liu,Jianye Wang,Jiahuan He,Chenyang Zhang,Xiaoyu Sui,Pengfei Zhang,Lizhen Cui,Shuo Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:80: 102520-102520 被引量:36
标识
DOI:10.1016/j.media.2022.102520
摘要

To the best of our knowledge, artificial intelligence stain generation is an urgent requirement for histopathology images. Pathological examinations usually only utilize hematoxylin and eosin (H&E) regular staining to show histomorphological characteristics, but to accurately diagnose the disease, functional staining (such as oil red O and Ki67) are also required to provide important auxiliary information. However, the same tissue section is usually stained with one stain, and additional functional staining is not only time-consuming but also causes inevitable morphological misalignment due to manual manipulation. This brings difficulties to the development of artificial intelligence pathological image analysis tools. In this work, we propose a histopathology staining transfer framework to generate virtual functional staining images from H&E regular staining images. Compared with the framework that emphasizes generation diversity in the natural image field, we use KL loss and histo loss to align and separate style feature spaces in different domains to obtain domain-variant style features. The proposed multiple virtual functional stain (MVFStain) abstracts staining conversion to domain mapping and comprehensively utilizes multiple staining information. We evaluated the proposed method on four datasets (lung lesion, lung lobes, breast, and atherosclerotic lesion). The experiment involves the translation of H&E to nine other functional stains: CC10, Ki67, proSPC, HER2, PR, ER, oil red O, α-SMA, and macrophages. The major quantitative results are divided into image quality and positive signal prediction. MVFStain is close to or even surpasses one-to-one image translation on psnr and HTI image quality metrics. The best psnr reaches 26.1919, and HIT reaches 0.9430. We used mIOD to evaluate the optical density of positive signals, and CNR and gCNR to evaluate the lesion detectability. The results show that the mIOD of positive signals of virtual staining was slightly lower than the ground truth and close the lesion detectability of artificial staining. These results prove that the potential exists to develop a successful clinical alternative to artificial functional stains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南山发布了新的文献求助10
2秒前
wcy完成签到 ,获得积分10
4秒前
5秒前
5秒前
9秒前
13秒前
丝竹丛中墨未干完成签到,获得积分10
16秒前
bkagyin应助yyy采纳,获得10
17秒前
Jay枫发布了新的文献求助10
18秒前
猪脑过载完成签到,获得积分10
20秒前
Ava应助陈思采纳,获得10
23秒前
iaskwho完成签到 ,获得积分10
25秒前
Jay枫完成签到,获得积分20
26秒前
27秒前
Criminology34举报zhang求助涉嫌违规
30秒前
chengxiping发布了新的文献求助10
31秒前
斯文败类应助忽悠老羊采纳,获得10
32秒前
35秒前
酷炫的安雁完成签到 ,获得积分10
36秒前
BowieHuang应助Cl采纳,获得10
37秒前
没想到羽毛完成签到,获得积分20
37秒前
别摆烂了完成签到,获得积分10
37秒前
38秒前
38秒前
畅快代柔完成签到 ,获得积分10
39秒前
42秒前
魏凯源完成签到,获得积分10
42秒前
OU完成签到,获得积分10
43秒前
lkx发布了新的文献求助10
43秒前
完美世界应助DDL采纳,获得10
44秒前
Saunak完成签到,获得积分10
45秒前
无限的白羊完成签到 ,获得积分10
46秒前
辛勤的喉完成签到 ,获得积分10
46秒前
具体问题具体分析完成签到,获得积分10
47秒前
陈思发布了新的文献求助10
48秒前
CodeCraft应助没想到羽毛采纳,获得10
49秒前
人文地理cg完成签到,获得积分20
51秒前
科研通AI6.1应助sci大户采纳,获得10
52秒前
54秒前
hoangphong完成签到,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772052
求助须知:如何正确求助?哪些是违规求助? 5595492
关于积分的说明 15428899
捐赠科研通 4905183
什么是DOI,文献DOI怎么找? 2639251
邀请新用户注册赠送积分活动 1587158
关于科研通互助平台的介绍 1542040