MVFStain: Multiple virtual functional stain histopathology images generation based on specific domain mapping

污渍 染色 人工智能 H&E染色 计算机科学 模式识别(心理学) 病理 医学
作者
Ranran Zhang,Yankun Cao,Yujun Li,Zhi Liu,Jianye Wang,Jiahuan He,Chenyang Zhang,Xiaoyu Sui,Pengfei Zhang,Lizhen Cui,Shuo Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:80: 102520-102520 被引量:36
标识
DOI:10.1016/j.media.2022.102520
摘要

To the best of our knowledge, artificial intelligence stain generation is an urgent requirement for histopathology images. Pathological examinations usually only utilize hematoxylin and eosin (H&E) regular staining to show histomorphological characteristics, but to accurately diagnose the disease, functional staining (such as oil red O and Ki67) are also required to provide important auxiliary information. However, the same tissue section is usually stained with one stain, and additional functional staining is not only time-consuming but also causes inevitable morphological misalignment due to manual manipulation. This brings difficulties to the development of artificial intelligence pathological image analysis tools. In this work, we propose a histopathology staining transfer framework to generate virtual functional staining images from H&E regular staining images. Compared with the framework that emphasizes generation diversity in the natural image field, we use KL loss and histo loss to align and separate style feature spaces in different domains to obtain domain-variant style features. The proposed multiple virtual functional stain (MVFStain) abstracts staining conversion to domain mapping and comprehensively utilizes multiple staining information. We evaluated the proposed method on four datasets (lung lesion, lung lobes, breast, and atherosclerotic lesion). The experiment involves the translation of H&E to nine other functional stains: CC10, Ki67, proSPC, HER2, PR, ER, oil red O, α-SMA, and macrophages. The major quantitative results are divided into image quality and positive signal prediction. MVFStain is close to or even surpasses one-to-one image translation on psnr and HTI image quality metrics. The best psnr reaches 26.1919, and HIT reaches 0.9430. We used mIOD to evaluate the optical density of positive signals, and CNR and gCNR to evaluate the lesion detectability. The results show that the mIOD of positive signals of virtual staining was slightly lower than the ground truth and close the lesion detectability of artificial staining. These results prove that the potential exists to develop a successful clinical alternative to artificial functional stains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
晴天完成签到,获得积分10
1秒前
坦率无剑完成签到,获得积分10
1秒前
2秒前
3秒前
HuangYu关注了科研通微信公众号
4秒前
firefly完成签到 ,获得积分10
4秒前
gjx完成签到 ,获得积分10
4秒前
yangshuai发布了新的文献求助10
6秒前
晴天发布了新的文献求助10
7秒前
carbonhan完成签到,获得积分10
9秒前
无极微光应助eden采纳,获得20
11秒前
KKK完成签到,获得积分20
11秒前
ming完成签到,获得积分10
12秒前
pluto应助科研通管家采纳,获得10
14秒前
14秒前
Lny应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
14秒前
pluto应助科研通管家采纳,获得10
14秒前
Lny应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
pluto应助科研通管家采纳,获得10
14秒前
14秒前
pluto应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
14秒前
Lny应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
14秒前
HOAN应助科研通管家采纳,获得30
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978