亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MVFStain: Multiple virtual functional stain histopathology images generation based on specific domain mapping

污渍 染色 人工智能 H&E染色 计算机科学 模式识别(心理学) 病理 医学
作者
Ranran Zhang,Yankun Cao,Yujun Li,Zhi Liu,Jianye Wang,Jiahuan He,Chenyang Zhang,Xiaoyu Sui,Pengfei Zhang,Lizhen Cui,Shuo Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:80: 102520-102520 被引量:36
标识
DOI:10.1016/j.media.2022.102520
摘要

To the best of our knowledge, artificial intelligence stain generation is an urgent requirement for histopathology images. Pathological examinations usually only utilize hematoxylin and eosin (H&E) regular staining to show histomorphological characteristics, but to accurately diagnose the disease, functional staining (such as oil red O and Ki67) are also required to provide important auxiliary information. However, the same tissue section is usually stained with one stain, and additional functional staining is not only time-consuming but also causes inevitable morphological misalignment due to manual manipulation. This brings difficulties to the development of artificial intelligence pathological image analysis tools. In this work, we propose a histopathology staining transfer framework to generate virtual functional staining images from H&E regular staining images. Compared with the framework that emphasizes generation diversity in the natural image field, we use KL loss and histo loss to align and separate style feature spaces in different domains to obtain domain-variant style features. The proposed multiple virtual functional stain (MVFStain) abstracts staining conversion to domain mapping and comprehensively utilizes multiple staining information. We evaluated the proposed method on four datasets (lung lesion, lung lobes, breast, and atherosclerotic lesion). The experiment involves the translation of H&E to nine other functional stains: CC10, Ki67, proSPC, HER2, PR, ER, oil red O, α-SMA, and macrophages. The major quantitative results are divided into image quality and positive signal prediction. MVFStain is close to or even surpasses one-to-one image translation on psnr and HTI image quality metrics. The best psnr reaches 26.1919, and HIT reaches 0.9430. We used mIOD to evaluate the optical density of positive signals, and CNR and gCNR to evaluate the lesion detectability. The results show that the mIOD of positive signals of virtual staining was slightly lower than the ground truth and close the lesion detectability of artificial staining. These results prove that the potential exists to develop a successful clinical alternative to artificial functional stains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
6秒前
7秒前
迅速初柳发布了新的文献求助10
10秒前
Alberat发布了新的文献求助10
11秒前
11秒前
14秒前
小二郎应助迅速初柳采纳,获得10
16秒前
20秒前
悦耳青梦发布了新的文献求助10
23秒前
卷毛维安完成签到 ,获得积分10
25秒前
迷路的沛芹完成签到 ,获得积分0
25秒前
27秒前
丁一发布了新的文献求助20
27秒前
科研通AI6.1应助LucyMartinez采纳,获得10
30秒前
Meyako完成签到 ,获得积分0
32秒前
33秒前
Jasper应助悦耳青梦采纳,获得10
33秒前
LucyMartinez完成签到,获得积分10
38秒前
韦鑫龙完成签到,获得积分10
39秒前
LG应助科研通管家采纳,获得10
41秒前
41秒前
null应助科研通管家采纳,获得10
41秒前
null应助科研通管家采纳,获得10
41秒前
null应助科研通管家采纳,获得10
41秒前
快乐若云应助科研通管家采纳,获得10
41秒前
null应助科研通管家采纳,获得10
41秒前
null应助科研通管家采纳,获得10
41秒前
41秒前
null应助科研通管家采纳,获得10
41秒前
LG应助科研通管家采纳,获得10
42秒前
null应助科研通管家采纳,获得10
42秒前
斯文败类应助科研通管家采纳,获得10
42秒前
LucyMartinez发布了新的文献求助10
42秒前
Ping完成签到,获得积分10
43秒前
45秒前
46秒前
龙猫抱枕完成签到,获得积分10
46秒前
50秒前
英俊的未来完成签到 ,获得积分10
52秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746460
求助须知:如何正确求助?哪些是违规求助? 5434797
关于积分的说明 15355420
捐赠科研通 4886401
什么是DOI,文献DOI怎么找? 2627238
邀请新用户注册赠送积分活动 1575707
关于科研通互助平台的介绍 1532471