MVFStain: Multiple virtual functional stain histopathology images generation based on specific domain mapping

污渍 染色 人工智能 H&E染色 计算机科学 模式识别(心理学) 病理 医学
作者
Ranran Zhang,Yankun Cao,Yujun Li,Zhi Liu,Jianye Wang,Jiahuan He,Chenyang Zhang,Xiaoyu Sui,Pengfei Zhang,Lizhen Cui,Shuo Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:80: 102520-102520 被引量:36
标识
DOI:10.1016/j.media.2022.102520
摘要

To the best of our knowledge, artificial intelligence stain generation is an urgent requirement for histopathology images. Pathological examinations usually only utilize hematoxylin and eosin (H&E) regular staining to show histomorphological characteristics, but to accurately diagnose the disease, functional staining (such as oil red O and Ki67) are also required to provide important auxiliary information. However, the same tissue section is usually stained with one stain, and additional functional staining is not only time-consuming but also causes inevitable morphological misalignment due to manual manipulation. This brings difficulties to the development of artificial intelligence pathological image analysis tools. In this work, we propose a histopathology staining transfer framework to generate virtual functional staining images from H&E regular staining images. Compared with the framework that emphasizes generation diversity in the natural image field, we use KL loss and histo loss to align and separate style feature spaces in different domains to obtain domain-variant style features. The proposed multiple virtual functional stain (MVFStain) abstracts staining conversion to domain mapping and comprehensively utilizes multiple staining information. We evaluated the proposed method on four datasets (lung lesion, lung lobes, breast, and atherosclerotic lesion). The experiment involves the translation of H&E to nine other functional stains: CC10, Ki67, proSPC, HER2, PR, ER, oil red O, α-SMA, and macrophages. The major quantitative results are divided into image quality and positive signal prediction. MVFStain is close to or even surpasses one-to-one image translation on psnr and HTI image quality metrics. The best psnr reaches 26.1919, and HIT reaches 0.9430. We used mIOD to evaluate the optical density of positive signals, and CNR and gCNR to evaluate the lesion detectability. The results show that the mIOD of positive signals of virtual staining was slightly lower than the ground truth and close the lesion detectability of artificial staining. These results prove that the potential exists to develop a successful clinical alternative to artificial functional stains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我爱学习完成签到,获得积分10
1秒前
meina完成签到,获得积分10
1秒前
谭龙杰完成签到,获得积分20
1秒前
echo发布了新的文献求助10
1秒前
2秒前
顾矜应助lmkpx采纳,获得10
2秒前
科研通AI6应助今昔采纳,获得10
2秒前
OK了老科发布了新的文献求助10
2秒前
2秒前
RYS完成签到,获得积分10
2秒前
枯荣完成签到 ,获得积分10
3秒前
4秒前
Nan发布了新的文献求助10
4秒前
meina发布了新的文献求助10
5秒前
woodenfish发布了新的文献求助10
5秒前
6秒前
鑫鑫子发布了新的文献求助10
6秒前
positive发布了新的文献求助10
6秒前
Jasper应助xiaoxiang_1001采纳,获得10
6秒前
6秒前
王静静完成签到,获得积分10
6秒前
7秒前
会飞的生菜关注了科研通微信公众号
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
乂领域应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
哭泣的烧鹅完成签到 ,获得积分10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得30
8秒前
1412yz完成签到,获得积分20
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406315
求助须知:如何正确求助?哪些是违规求助? 4524393
关于积分的说明 14097868
捐赠科研通 4438136
什么是DOI,文献DOI怎么找? 2436010
邀请新用户注册赠送积分活动 1428144
关于科研通互助平台的介绍 1406292