已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MVFStain: Multiple virtual functional stain histopathology images generation based on specific domain mapping

污渍 染色 人工智能 H&E染色 计算机科学 模式识别(心理学) 病理 医学
作者
Ranran Zhang,Yankun Cao,Yujun Li,Zhi Liu,Jianye Wang,Jiahuan He,Chenyang Zhang,Xiaoyu Sui,Pengfei Zhang,Lizhen Cui,Shuo Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:80: 102520-102520 被引量:36
标识
DOI:10.1016/j.media.2022.102520
摘要

To the best of our knowledge, artificial intelligence stain generation is an urgent requirement for histopathology images. Pathological examinations usually only utilize hematoxylin and eosin (H&E) regular staining to show histomorphological characteristics, but to accurately diagnose the disease, functional staining (such as oil red O and Ki67) are also required to provide important auxiliary information. However, the same tissue section is usually stained with one stain, and additional functional staining is not only time-consuming but also causes inevitable morphological misalignment due to manual manipulation. This brings difficulties to the development of artificial intelligence pathological image analysis tools. In this work, we propose a histopathology staining transfer framework to generate virtual functional staining images from H&E regular staining images. Compared with the framework that emphasizes generation diversity in the natural image field, we use KL loss and histo loss to align and separate style feature spaces in different domains to obtain domain-variant style features. The proposed multiple virtual functional stain (MVFStain) abstracts staining conversion to domain mapping and comprehensively utilizes multiple staining information. We evaluated the proposed method on four datasets (lung lesion, lung lobes, breast, and atherosclerotic lesion). The experiment involves the translation of H&E to nine other functional stains: CC10, Ki67, proSPC, HER2, PR, ER, oil red O, α-SMA, and macrophages. The major quantitative results are divided into image quality and positive signal prediction. MVFStain is close to or even surpasses one-to-one image translation on psnr and HTI image quality metrics. The best psnr reaches 26.1919, and HIT reaches 0.9430. We used mIOD to evaluate the optical density of positive signals, and CNR and gCNR to evaluate the lesion detectability. The results show that the mIOD of positive signals of virtual staining was slightly lower than the ground truth and close the lesion detectability of artificial staining. These results prove that the potential exists to develop a successful clinical alternative to artificial functional stains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上的海亦完成签到 ,获得积分10
1秒前
2秒前
何大青发布了新的文献求助10
5秒前
5秒前
今后应助ppp采纳,获得30
6秒前
顾矜应助T1aNer299采纳,获得10
7秒前
张恒完成签到,获得积分10
7秒前
小红完成签到 ,获得积分10
7秒前
强健的长颈鹿完成签到,获得积分10
8秒前
情怀应助yang采纳,获得30
8秒前
IfItheonlyone完成签到 ,获得积分10
9秒前
11秒前
junjun完成签到 ,获得积分10
11秒前
陶醉的钢笔完成签到 ,获得积分0
11秒前
聪明夏波发布了新的文献求助10
16秒前
17秒前
18秒前
ohh完成签到 ,获得积分10
20秒前
嗷呜完成签到,获得积分10
20秒前
bubu发布了新的文献求助10
23秒前
明眸完成签到 ,获得积分10
25秒前
Criminology34应助Dirsch采纳,获得10
29秒前
TAT完成签到 ,获得积分10
29秒前
m李完成签到 ,获得积分10
33秒前
领导范儿应助forsake采纳,获得10
38秒前
89完成签到,获得积分10
41秒前
完美世界应助清醒采纳,获得10
44秒前
46秒前
47秒前
落雪完成签到 ,获得积分10
49秒前
打打应助科研通管家采纳,获得30
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
forsake发布了新的文献求助10
50秒前
无极微光应助科研通管家采纳,获得20
50秒前
无极微光应助科研通管家采纳,获得20
50秒前
50秒前
50秒前
YY完成签到,获得积分10
50秒前
bathygobius完成签到,获得积分10
51秒前
谨慎钻石完成签到 ,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663955
求助须知:如何正确求助?哪些是违规求助? 4855706
关于积分的说明 15106735
捐赠科研通 4822347
什么是DOI,文献DOI怎么找? 2581405
邀请新用户注册赠送积分活动 1535549
关于科研通互助平台的介绍 1493834