MVFStain: Multiple virtual functional stain histopathology images generation based on specific domain mapping

污渍 染色 人工智能 H&E染色 计算机科学 模式识别(心理学) 病理 医学
作者
Ranran Zhang,Yankun Cao,Yujun Li,Zhi Liu,Jianye Wang,Jiahuan He,Chenyang Zhang,Xiaoyu Sui,Pengfei Zhang,Lizhen Cui,Shuo Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:80: 102520-102520 被引量:36
标识
DOI:10.1016/j.media.2022.102520
摘要

To the best of our knowledge, artificial intelligence stain generation is an urgent requirement for histopathology images. Pathological examinations usually only utilize hematoxylin and eosin (H&E) regular staining to show histomorphological characteristics, but to accurately diagnose the disease, functional staining (such as oil red O and Ki67) are also required to provide important auxiliary information. However, the same tissue section is usually stained with one stain, and additional functional staining is not only time-consuming but also causes inevitable morphological misalignment due to manual manipulation. This brings difficulties to the development of artificial intelligence pathological image analysis tools. In this work, we propose a histopathology staining transfer framework to generate virtual functional staining images from H&E regular staining images. Compared with the framework that emphasizes generation diversity in the natural image field, we use KL loss and histo loss to align and separate style feature spaces in different domains to obtain domain-variant style features. The proposed multiple virtual functional stain (MVFStain) abstracts staining conversion to domain mapping and comprehensively utilizes multiple staining information. We evaluated the proposed method on four datasets (lung lesion, lung lobes, breast, and atherosclerotic lesion). The experiment involves the translation of H&E to nine other functional stains: CC10, Ki67, proSPC, HER2, PR, ER, oil red O, α-SMA, and macrophages. The major quantitative results are divided into image quality and positive signal prediction. MVFStain is close to or even surpasses one-to-one image translation on psnr and HTI image quality metrics. The best psnr reaches 26.1919, and HIT reaches 0.9430. We used mIOD to evaluate the optical density of positive signals, and CNR and gCNR to evaluate the lesion detectability. The results show that the mIOD of positive signals of virtual staining was slightly lower than the ground truth and close the lesion detectability of artificial staining. These results prove that the potential exists to develop a successful clinical alternative to artificial functional stains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkk完成签到 ,获得积分10
1秒前
蓝天发布了新的文献求助10
3秒前
135完成签到 ,获得积分10
3秒前
宫立辉发布了新的文献求助10
3秒前
坚定岂愈完成签到,获得积分10
5秒前
7秒前
豆子完成签到,获得积分10
8秒前
LaTeXer应助陈陈采纳,获得80
8秒前
迷路芝麻完成签到,获得积分10
9秒前
9秒前
BONe完成签到,获得积分10
9秒前
苟玉琴完成签到,获得积分10
10秒前
过时的不评完成签到,获得积分10
10秒前
11秒前
传奇3应助yu采纳,获得10
12秒前
12秒前
13秒前
14秒前
ppsweek发布了新的文献求助10
14秒前
小南子完成签到,获得积分10
15秒前
su完成签到,获得积分10
15秒前
135发布了新的文献求助50
15秒前
zjh发布了新的文献求助10
15秒前
平常艳一发布了新的文献求助10
15秒前
15秒前
lll发布了新的文献求助10
16秒前
冰月雪蝶发布了新的文献求助10
16秒前
星辰大海应助朱晖采纳,获得10
17秒前
jerry_x发布了新的文献求助10
19秒前
19秒前
wsysweet完成签到,获得积分10
20秒前
沧海云完成签到 ,获得积分0
21秒前
一去完成签到 ,获得积分10
21秒前
彭于晏应助ppsweek采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
Hello应助67n采纳,获得10
22秒前
蜘蛛道理完成签到 ,获得积分10
23秒前
24秒前
香蕉觅云应助Sober采纳,获得10
26秒前
量子星尘发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774957
求助须知:如何正确求助?哪些是违规求助? 5620753
关于积分的说明 15437173
捐赠科研通 4907368
什么是DOI,文献DOI怎么找? 2640630
邀请新用户注册赠送积分活动 1588544
关于科研通互助平台的介绍 1543412