神经形态工程学
记忆电阻器
计算机科学
人工神经网络
水准点(测量)
枝晶(数学)
电阻随机存取存储器
高效能源利用
索马
人工智能
材料科学
电子工程
神经科学
电压
电气工程
工程类
几何学
数学
大地测量学
生物
地理
作者
Xinyi Li,Ya‐Nan Zhong,Hang Chen,Jianshi Tang,Xiaojian Zheng,Wen Sun,Yang Li,Dong Wu,Bin Gao,Xiaolin Hu,He Qian,Huaqiang Wu
标识
DOI:10.1002/adma.202203684
摘要
Diverse microscopic ionic dynamics help mediate the ability of a biological neural network to handle complex tasks with low energy consumption. Thus, rich internal ionic dynamics in memristors based on transition metal oxide are expected to provide a unique and useful platform for implementing energy-efficient neuromorphic computing. To this end, a titanium oxide (TiOx )-based interface-type dynamic memristor and an niobium oxide (NbOx )-based Mott memristor are integrated as an artificial dendrite and spike-firing soma, respectively, to construct a dendritic neuron unit for realizing high-efficiency spatial-temporal information processing. Further, a dendritic neural network is hardware-implemented for spatial-temporal information processing to highlight the computational advantages achieved by incorporating dendritic functions in the network. Human motion recognition is demonstrated using the Nanyang Technological University-Red Green Blue (NTU-RGB) dataset as a benchmark spatial-temporal task; it shows a nearly 20% improvement in accuracy for the memristors-based hardware incorporating dendrites and a 1000× advantage in power efficiency compared to that of the graphics processing unit (GPU). The dendritic neuron developed in this study can be considered a critical building block for implementing more bio-plausible neural networks that can manage complex spatial-temporal tasks with high efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI