Iterative structure transformation and conditional random field based method for unsupervised multimodal change detection

条件随机场 转化(遗传学) 计算机科学 人工智能 领域(数学) 模式识别(心理学) 变更检测 数学 生物化学 基因 化学 纯数学
作者
Yuli Sun,Lin Lei,Dongdong Guan,Junzheng Wu,Gangyao Kuang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:131: 108845-108845 被引量:17
标识
DOI:10.1016/j.patcog.2022.108845
摘要

• A structure transformation is proposed to transform the heterogeneous images to the same differential domain. • A CRF model is designed for multimodal change detection by incorporating the change information based unary potential, local spatially-adjacent neighbor information and global spectrally-similar neighbor information based pairwise potentials. • An iterative framework is used to combine the structure transformation and CRF segmentation to improve the accuracy. Change detection between heterogeneous images has become an increasingly interesting research topic in remote sensing. The different appearances and statistics of heterogeneous images bring great challenges to this task. In this paper, we propose an unsupervised iterative structure transformation and conditional random field (IST-CRF) based multimodal change detection (MCD) method, combining an imaging modality-invariant based structure transformation method with a random filed framework specifically designed for MCD, to acquire an optimal change map within a global probabilistic model. IST-CRF first constructs graphs to represent the structures of the images, and transforms the heterogeneous images to the same differential domain by using graph based forward and backward structure transformations. Then, the change vectors are calculated to distinguish the changed and unchanged areas. Finally, in order to classify the change vectors and compute the binary change map, a CRF model is designed to fully explore the spectral-spatial information, which incorporates the change information, local spatially-adjacent neighbor information, and global spectrally-similar neighbor information with a random field framework. As the changed samples will influence the structure transformation and reduce the quality of change vectors, we use an iterative framework to propagate the CRF segmentation results back to the structure transformation process that removes the changed samples, and thus improve the accuracy of change detection. Experiments conducted on different real data sets show the effectiveness of IST-CRF. Source code of the proposed method will be made available at https://github.com/yulisun/IST-CRF .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈宇蛟完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
大吉发布了新的文献求助10
2秒前
小灰完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
Able完成签到,获得积分20
4秒前
浮游应助滚滚采纳,获得10
4秒前
小蘑菇应助化悲愤高压采纳,获得10
4秒前
4秒前
迷人迎曼发布了新的文献求助10
5秒前
5秒前
雪山飞虹发布了新的文献求助10
5秒前
026发布了新的文献求助10
6秒前
icey发布了新的文献求助10
6秒前
小张z完成签到,获得积分10
7秒前
鱼猫发布了新的文献求助10
8秒前
XHW完成签到,获得积分10
8秒前
青又完成签到,获得积分10
8秒前
8秒前
8秒前
Able发布了新的文献求助10
8秒前
阿德发布了新的文献求助10
8秒前
5433发布了新的文献求助10
9秒前
搜集达人应助碧蓝安露采纳,获得10
10秒前
Vanness发布了新的文献求助10
11秒前
廿一发布了新的文献求助10
11秒前
XHW发布了新的文献求助10
12秒前
13秒前
14秒前
情怀应助丘奇采纳,获得10
14秒前
周伟杰发布了新的文献求助10
16秒前
Xuan完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
何坤录发布了新的文献求助10
18秒前
西梅完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424345
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163720
捐赠科研通 4455670
什么是DOI,文献DOI怎么找? 2443852
邀请新用户注册赠送积分活动 1434997
关于科研通互助平台的介绍 1412337