Iterative structure transformation and conditional random field based method for unsupervised multimodal change detection

条件随机场 转化(遗传学) 计算机科学 人工智能 领域(数学) 模式识别(心理学) 变更检测 数学 生物化学 基因 化学 纯数学
作者
Yuli Sun,Lin Lei,Dongdong Guan,Junzheng Wu,Gangyao Kuang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:131: 108845-108845 被引量:17
标识
DOI:10.1016/j.patcog.2022.108845
摘要

• A structure transformation is proposed to transform the heterogeneous images to the same differential domain. • A CRF model is designed for multimodal change detection by incorporating the change information based unary potential, local spatially-adjacent neighbor information and global spectrally-similar neighbor information based pairwise potentials. • An iterative framework is used to combine the structure transformation and CRF segmentation to improve the accuracy. Change detection between heterogeneous images has become an increasingly interesting research topic in remote sensing. The different appearances and statistics of heterogeneous images bring great challenges to this task. In this paper, we propose an unsupervised iterative structure transformation and conditional random field (IST-CRF) based multimodal change detection (MCD) method, combining an imaging modality-invariant based structure transformation method with a random filed framework specifically designed for MCD, to acquire an optimal change map within a global probabilistic model. IST-CRF first constructs graphs to represent the structures of the images, and transforms the heterogeneous images to the same differential domain by using graph based forward and backward structure transformations. Then, the change vectors are calculated to distinguish the changed and unchanged areas. Finally, in order to classify the change vectors and compute the binary change map, a CRF model is designed to fully explore the spectral-spatial information, which incorporates the change information, local spatially-adjacent neighbor information, and global spectrally-similar neighbor information with a random field framework. As the changed samples will influence the structure transformation and reduce the quality of change vectors, we use an iterative framework to propagate the CRF segmentation results back to the structure transformation process that removes the changed samples, and thus improve the accuracy of change detection. Experiments conducted on different real data sets show the effectiveness of IST-CRF. Source code of the proposed method will be made available at https://github.com/yulisun/IST-CRF .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助飞快的映菱采纳,获得10
1秒前
然来溪发布了新的文献求助10
1秒前
1秒前
英姑应助熊猫采纳,获得10
1秒前
丰富的高山完成签到,获得积分10
1秒前
1秒前
ETJ完成签到,获得积分10
1秒前
止观完成签到,获得积分10
1秒前
chenhui发布了新的文献求助10
1秒前
夏夜晚风完成签到,获得积分10
2秒前
新开完成签到,获得积分10
2秒前
自由的雅旋完成签到 ,获得积分10
3秒前
朵拉A梦发布了新的文献求助30
3秒前
3秒前
愉快的夏菡完成签到,获得积分10
3秒前
Su完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
5秒前
8888拉发布了新的文献求助10
5秒前
悠悠发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
健壮的饼干完成签到,获得积分10
6秒前
研友_ZegMrL发布了新的文献求助10
7秒前
7秒前
Ai1412发布了新的文献求助10
7秒前
如沐风完成签到,获得积分10
8秒前
8秒前
Crazykk完成签到,获得积分10
8秒前
nianxunxi完成签到,获得积分10
9秒前
Tindra发布了新的文献求助10
9秒前
LewisAcid应助小河采纳,获得20
10秒前
chenhui完成签到,获得积分10
10秒前
10秒前
10秒前
乐乐应助清风采纳,获得10
10秒前
蜘蛛发布了新的文献求助10
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587292
求助须知:如何正确求助?哪些是违规求助? 4670431
关于积分的说明 14782816
捐赠科研通 4622441
什么是DOI,文献DOI怎么找? 2531237
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066