Iterative structure transformation and conditional random field based method for unsupervised multimodal change detection

条件随机场 转化(遗传学) 计算机科学 人工智能 领域(数学) 模式识别(心理学) 变更检测 数学 生物化学 基因 化学 纯数学
作者
Yuli Sun,Lin Lei,Dongdong Guan,Junzheng Wu,Gangyao Kuang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:131: 108845-108845 被引量:17
标识
DOI:10.1016/j.patcog.2022.108845
摘要

• A structure transformation is proposed to transform the heterogeneous images to the same differential domain. • A CRF model is designed for multimodal change detection by incorporating the change information based unary potential, local spatially-adjacent neighbor information and global spectrally-similar neighbor information based pairwise potentials. • An iterative framework is used to combine the structure transformation and CRF segmentation to improve the accuracy. Change detection between heterogeneous images has become an increasingly interesting research topic in remote sensing. The different appearances and statistics of heterogeneous images bring great challenges to this task. In this paper, we propose an unsupervised iterative structure transformation and conditional random field (IST-CRF) based multimodal change detection (MCD) method, combining an imaging modality-invariant based structure transformation method with a random filed framework specifically designed for MCD, to acquire an optimal change map within a global probabilistic model. IST-CRF first constructs graphs to represent the structures of the images, and transforms the heterogeneous images to the same differential domain by using graph based forward and backward structure transformations. Then, the change vectors are calculated to distinguish the changed and unchanged areas. Finally, in order to classify the change vectors and compute the binary change map, a CRF model is designed to fully explore the spectral-spatial information, which incorporates the change information, local spatially-adjacent neighbor information, and global spectrally-similar neighbor information with a random field framework. As the changed samples will influence the structure transformation and reduce the quality of change vectors, we use an iterative framework to propagate the CRF segmentation results back to the structure transformation process that removes the changed samples, and thus improve the accuracy of change detection. Experiments conducted on different real data sets show the effectiveness of IST-CRF. Source code of the proposed method will be made available at https://github.com/yulisun/IST-CRF .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
齐路明发布了新的文献求助10
刚刚
2秒前
我是老大应助微毒麻醉采纳,获得10
4秒前
haoliu完成签到,获得积分10
4秒前
boytoa完成签到,获得积分10
4秒前
5秒前
5秒前
wangyaya应助yangluyao采纳,获得10
9秒前
kang发布了新的文献求助10
9秒前
10秒前
10秒前
ForZero完成签到 ,获得积分20
10秒前
leiiiiiiii发布了新的文献求助10
12秒前
ccm应助细心青烟采纳,获得10
12秒前
12秒前
12秒前
13秒前
彭于晏应助qiqi采纳,获得10
13秒前
胡萝卜icc完成签到,获得积分20
13秒前
13秒前
夏青荷发布了新的文献求助10
15秒前
16秒前
慕苡完成签到 ,获得积分10
16秒前
葭月十七发布了新的文献求助10
17秒前
18秒前
孟阳发布了新的文献求助50
19秒前
HelloXue完成签到,获得积分10
21秒前
搜集达人应助琳雨采纳,获得10
21秒前
22秒前
23秒前
uu完成签到,获得积分10
25秒前
chenry825i完成签到 ,获得积分10
26秒前
kang完成签到,获得积分20
27秒前
27秒前
moral完成签到 ,获得积分10
28秒前
收敛发布了新的文献求助10
28秒前
李爱国应助尊敬飞丹采纳,获得10
28秒前
28秒前
上官聪展完成签到 ,获得积分10
30秒前
31秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329654
求助须知:如何正确求助?哪些是违规求助? 2959247
关于积分的说明 8594980
捐赠科研通 2637718
什么是DOI,文献DOI怎么找? 1443719
科研通“疑难数据库(出版商)”最低求助积分说明 668843
邀请新用户注册赠送积分活动 656278