Iterative structure transformation and conditional random field based method for unsupervised multimodal change detection

条件随机场 转化(遗传学) 计算机科学 人工智能 领域(数学) 模式识别(心理学) 变更检测 数学 生物化学 基因 化学 纯数学
作者
Yuli Sun,Lin Lei,Dongdong Guan,Junzheng Wu,Gangyao Kuang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:131: 108845-108845 被引量:17
标识
DOI:10.1016/j.patcog.2022.108845
摘要

• A structure transformation is proposed to transform the heterogeneous images to the same differential domain. • A CRF model is designed for multimodal change detection by incorporating the change information based unary potential, local spatially-adjacent neighbor information and global spectrally-similar neighbor information based pairwise potentials. • An iterative framework is used to combine the structure transformation and CRF segmentation to improve the accuracy. Change detection between heterogeneous images has become an increasingly interesting research topic in remote sensing. The different appearances and statistics of heterogeneous images bring great challenges to this task. In this paper, we propose an unsupervised iterative structure transformation and conditional random field (IST-CRF) based multimodal change detection (MCD) method, combining an imaging modality-invariant based structure transformation method with a random filed framework specifically designed for MCD, to acquire an optimal change map within a global probabilistic model. IST-CRF first constructs graphs to represent the structures of the images, and transforms the heterogeneous images to the same differential domain by using graph based forward and backward structure transformations. Then, the change vectors are calculated to distinguish the changed and unchanged areas. Finally, in order to classify the change vectors and compute the binary change map, a CRF model is designed to fully explore the spectral-spatial information, which incorporates the change information, local spatially-adjacent neighbor information, and global spectrally-similar neighbor information with a random field framework. As the changed samples will influence the structure transformation and reduce the quality of change vectors, we use an iterative framework to propagate the CRF segmentation results back to the structure transformation process that removes the changed samples, and thus improve the accuracy of change detection. Experiments conducted on different real data sets show the effectiveness of IST-CRF. Source code of the proposed method will be made available at https://github.com/yulisun/IST-CRF .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zzz2193发布了新的文献求助10
1秒前
1秒前
埃森发布了新的文献求助10
2秒前
MiaoRui完成签到,获得积分10
3秒前
4秒前
6秒前
7秒前
huang发布了新的文献求助30
10秒前
快乐小白菜完成签到 ,获得积分10
12秒前
19秒前
20秒前
今后应助泡沫之夏采纳,获得10
24秒前
Hanoi347发布了新的文献求助10
24秒前
喵喵完成签到 ,获得积分10
24秒前
26秒前
27秒前
29秒前
CA发布了新的文献求助10
29秒前
哆来咪发布了新的文献求助20
29秒前
无花果应助syy080837采纳,获得10
30秒前
30秒前
草中有粑粑完成签到,获得积分10
30秒前
白子双发布了新的文献求助10
30秒前
33秒前
34秒前
35秒前
coffee发布了新的文献求助10
35秒前
37秒前
诸葛语琴完成签到,获得积分10
38秒前
12121发布了新的文献求助10
40秒前
Kenny发布了新的文献求助10
41秒前
syy080837发布了新的文献求助10
43秒前
星辰大海应助埃森采纳,获得10
47秒前
Kenny完成签到,获得积分10
49秒前
学术混子雷雷雷雷雷完成签到,获得积分10
52秒前
huang完成签到,获得积分10
53秒前
57秒前
往事不可挽回完成签到 ,获得积分10
59秒前
王英俊完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560249
求助须知:如何正确求助?哪些是违规求助? 4645431
关于积分的说明 14675179
捐赠科研通 4586582
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490105
关于科研通互助平台的介绍 1460915