Research on formability, microstructure and mechanical properties of selective laser melted Mg-Y-Sm-Zn-Zr magnesium alloy

材料科学 选择性激光熔化 微观结构 等轴晶 合金 成核 熔点 成形性 镁合金 冶金 复合材料 热力学 物理
作者
Wenli Wang,Xin Yang,Kong Kong Wang
出处
期刊:Materials Characterization [Elsevier]
卷期号:189: 111980-111980 被引量:10
标识
DOI:10.1016/j.matchar.2022.111980
摘要

Selective laser melting (SLM) refers to a laser additive manufacturing technology. It shows its advantages of high efficiency and is capable of processing arbitrary complex structural parts. However, the SLM of magnesium alloy is highly challenging and should be studied in depth due to the low melting and boiling point of magnesium alloy. In this study, selective laser melting (SLM) technology was used to manufacture the Mg-Y-Sm-Zn-Zr alloy. Microstructure characteristics and performance mechanism of the SLMed samples were investigated. As revealed by the results, samples characterized by relatively high densities and low surface roughness could be produced when the energy density was 83.3–166.7 J/mm3. The highest density of 97.8% could be obtained when the energy density was 125.7 J/mm3. The molten pool was found to consist of slender columnar grains at the edge and a small amount of equiaxed grains at the top, while the grains below the molten pool were coarsened under the action of the thermal influence. The role played by Y2O3 in the solidification of SLM was characterized using the degree of lattice mismatch. Impacted by the high lattice mismatch between Y2O3 and Mg, Y2O3 could not serve as an effective heterogeneous nucleation particle. The highest comperssive performance was obtained at energy density of 125.7 J/mm3 (YS = 304 ± 5 Mpa, UTS = 394 ± 5 Mpa). The main strengthening mechanism was fine-grain strengthening, followed by precipitation strengthening and the effect of solid solution strengthening was not obvious. This work provides a certain guiding significance for the follow-up research of SLMed rare earth magnesium alloy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研狗完成签到,获得积分10
刚刚
科小研发布了新的文献求助30
刚刚
1111发布了新的文献求助10
刚刚
完美焦完成签到,获得积分10
刚刚
SciGPT应助小王同学采纳,获得10
1秒前
寡妇哥完成签到,获得积分10
1秒前
完美世界应助jkhjkhj采纳,获得10
2秒前
2秒前
HanGao发布了新的文献求助10
2秒前
万能图书馆应助Helly采纳,获得10
3秒前
微笑枫发布了新的文献求助10
3秒前
青柠发布了新的文献求助20
3秒前
周明明完成签到 ,获得积分10
3秒前
Qq完成签到 ,获得积分10
3秒前
七yy发布了新的文献求助10
4秒前
urologywang完成签到 ,获得积分10
4秒前
BowieHuang应助刘培恒采纳,获得10
4秒前
Orange应助bbb采纳,获得10
4秒前
rr完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
Upupgrowth完成签到 ,获得积分10
5秒前
5秒前
研六六完成签到,获得积分10
5秒前
5秒前
莫等闲完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
aq22完成签到 ,获得积分10
6秒前
6秒前
八九完成签到 ,获得积分10
6秒前
6秒前
布布的宝贝完成签到,获得积分20
7秒前
呆萌乐萱发布了新的文献求助10
7秒前
chen发布了新的文献求助10
7秒前
Laer完成签到,获得积分10
7秒前
852应助chen采纳,获得10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645662
求助须知:如何正确求助?哪些是违规求助? 4769440
关于积分的说明 15031321
捐赠科研通 4804378
什么是DOI,文献DOI怎么找? 2568968
邀请新用户注册赠送积分活动 1526089
关于科研通互助平台的介绍 1485700