Background Based on numerous imaging and electrophysiological studies, the presupplementary motor area (pre-SMA) and the rostral cingulate motor area are cortical regions considered to be essential to voluntary movement initiation and behavioral control. However, their respective roles and functional interactions remain a long-standing and still debated question. Methods Here, we trained 2 rhesus monkeys (Macaca mulatta) in a complex cognitive task to compare the neuronal activity of these 2 regions on the medial wall during both perceptual and internally guided decisions. Results We confirmed the implication of both areas throughout the decision process. Critically, we demonstrate that instead of a stable invariant role, the pre-SMA and rostral cingulate motor area manifested a versatile hierarchical relationship depending on the mode of movement initiation. Whereas pre-SMA neurons were primarily engaged in decisions based on perceptual information, rostral cingulate motor area neurons preempted the decision process in case of an internally doubt-driven checking behavior, withholding pre-SMA recruitment during the time spent inhibiting the habitual action. Conclusions We identified a versatile hierarchical organization of the mediofrontal area that may substantially affect normal and pathological decision processes because adaptive behaviors, such as doubt-checking and its compulsive counterpart, rely on this subtle equilibrium in controlling action initiation.