Automatic Detection of Meniscus Tears Using Backbone Convolutional Neural Networks on Knee MRI

接收机工作特性 磁共振成像 卷积神经网络 计算机科学 弯月面 冠状面 矢状面 数据集 人工智能 威尔科克森符号秩检验 判别式 曼惠特尼U检验 医学 核医学 模式识别(心理学) 放射科 机器学习 数学 内科学 几何学 入射(几何)
作者
Truong Nguyen Khanh Hung,Vu Pham Thao Vy,Nguyễn Minh Trí,Le Ngoc Hoang,Lê Văn Tuấn,Quang‐Thai Ho,Nguyen Quoc Khanh Le,Jiunn‐Horng Kang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:57 (3): 740-749 被引量:19
标识
DOI:10.1002/jmri.28284
摘要

Background Timely diagnosis of meniscus injuries is key for preventing knee joint dysfunction and improving patient outcomes because it decreases morbidity and facilitates treatment planning. Purpose To train and evaluate a deep learning model for automated detection of meniscus tears on knee magnetic resonance imaging (MRI). Study type Bicentric retrospective study. Subjects In total, 584 knee MRI studies, divided among training ( n = 234), testing ( n = 200), and external validation ( n = 150) data sets, were used in this study. The public data set MRNet was used as a second external validation data set to evaluate the performance of the model. Sequence A 3 T, coronal, and sagittal images from T1‐weighted proton density (PD) fast spin‐echo (FSE) with fat saturation and T2‐weighted FSE with fat saturation sequences. Assessment The detection system for meniscus tear was based on the improved YOLOv4 model with Darknet‐53 as the backbone. The performance of the model was also compared with that of three radiologists of varying levels of experience. The determination of the presence of a meniscus tear from surgery reports was used as the ground truth for the images. Statistical Tests Sensitivity, specificity, prevalence, positive predictive value, negative predictive value, accuracy, and receiver operating characteristic curve were used to evaluate the performance of the detection model. Two‐way analysis of variance, Wilcoxon signed‐rank test, and Tukey's multiple tests were used to evaluate differences in performance between the model and radiologists. Results The overall accuracies for detecting meniscus tears using our model on the internal testing, internal validation, and external validation data sets were 95.4%, 95.8%, and 78.8%, respectively. One radiologist had significantly lower performance than our model in detecting meniscal tears (accuracy: 0.9025 ± 0.093 vs. 0.9580 ± 0.025). Data Conclusion The proposed model had high sensitivity, specificity, and accuracy for detecting meniscus tears on knee MRIs. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whiteside发布了新的文献求助10
刚刚
CC完成签到,获得积分10
刚刚
哈哈发布了新的文献求助10
1秒前
水牛应助peace采纳,获得20
1秒前
哈比发布了新的文献求助10
1秒前
揍鱼发布了新的文献求助10
1秒前
Tiam完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
coco发布了新的文献求助10
4秒前
4秒前
Akim应助合适小刺猬采纳,获得10
5秒前
bkagyin应助gzsy采纳,获得10
5秒前
5秒前
zzzzzzz完成签到,获得积分10
5秒前
5秒前
小二郎应助可靠的寒风采纳,获得10
5秒前
js完成签到,获得积分10
6秒前
汉堡包应助缘起缘灭采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
薰硝壤应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
IBMffff应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
火日立发布了新的文献求助10
7秒前
苏书白应助外向跳跳糖采纳,获得10
7秒前
8秒前
秦文静发布了新的文献求助10
8秒前
勤劳怜寒发布了新的文献求助20
8秒前
8秒前
李爱国应助哈比采纳,获得10
9秒前
9秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148931
求助须知:如何正确求助?哪些是违规求助? 2799908
关于积分的说明 7837731
捐赠科研通 2457479
什么是DOI,文献DOI怎么找? 1307870
科研通“疑难数据库(出版商)”最低求助积分说明 628312
版权声明 601685