亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Detection of Meniscus Tears Using Backbone Convolutional Neural Networks on Knee MRI

接收机工作特性 磁共振成像 卷积神经网络 计算机科学 弯月面 冠状面 矢状面 数据集 人工智能 威尔科克森符号秩检验 判别式 曼惠特尼U检验 医学 核医学 放射科 机器学习 数学 统计 入射(几何) 几何学
作者
Truong Nguyen Khanh Hung,Vu Pham Thao Vy,Nguyễn Minh Trí,Le Ngoc Hoang,Lê Văn Tuấn,Quang Thai Ho,Nguyen Quoc Khanh Le,Jiunn‐Horng Kang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:57 (3): 740-749 被引量:35
标识
DOI:10.1002/jmri.28284
摘要

Background Timely diagnosis of meniscus injuries is key for preventing knee joint dysfunction and improving patient outcomes because it decreases morbidity and facilitates treatment planning. Purpose To train and evaluate a deep learning model for automated detection of meniscus tears on knee magnetic resonance imaging (MRI). Study type Bicentric retrospective study. Subjects In total, 584 knee MRI studies, divided among training ( n = 234), testing ( n = 200), and external validation ( n = 150) data sets, were used in this study. The public data set MRNet was used as a second external validation data set to evaluate the performance of the model. Sequence A 3 T, coronal, and sagittal images from T1‐weighted proton density (PD) fast spin‐echo (FSE) with fat saturation and T2‐weighted FSE with fat saturation sequences. Assessment The detection system for meniscus tear was based on the improved YOLOv4 model with Darknet‐53 as the backbone. The performance of the model was also compared with that of three radiologists of varying levels of experience. The determination of the presence of a meniscus tear from surgery reports was used as the ground truth for the images. Statistical Tests Sensitivity, specificity, prevalence, positive predictive value, negative predictive value, accuracy, and receiver operating characteristic curve were used to evaluate the performance of the detection model. Two‐way analysis of variance, Wilcoxon signed‐rank test, and Tukey's multiple tests were used to evaluate differences in performance between the model and radiologists. Results The overall accuracies for detecting meniscus tears using our model on the internal testing, internal validation, and external validation data sets were 95.4%, 95.8%, and 78.8%, respectively. One radiologist had significantly lower performance than our model in detecting meniscal tears (accuracy: 0.9025 ± 0.093 vs. 0.9580 ± 0.025). Data Conclusion The proposed model had high sensitivity, specificity, and accuracy for detecting meniscus tears on knee MRIs. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
42秒前
丰富的绮波完成签到 ,获得积分10
42秒前
45秒前
SUnnnnn发布了新的文献求助10
48秒前
辰昜发布了新的文献求助10
49秒前
无花果应助SUnnnnn采纳,获得10
56秒前
Thanks完成签到 ,获得积分10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
1分钟前
TEMPO发布了新的文献求助10
1分钟前
2分钟前
123完成签到,获得积分10
2分钟前
123发布了新的文献求助10
2分钟前
科研通AI2S应助Becky采纳,获得10
3分钟前
顾矜应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
ZanE完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
码头整点薯条完成签到,获得积分10
4分钟前
4分钟前
Becky发布了新的文献求助10
4分钟前
358489228完成签到,获得积分10
4分钟前
zhang完成签到,获得积分10
4分钟前
ataybabdallah完成签到,获得积分10
4分钟前
英姑应助zhang采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
大模型应助科研通管家采纳,获得10
5分钟前
5分钟前
zhang发布了新的文献求助10
5分钟前
深情安青应助Propitious采纳,获得10
5分钟前
6分钟前
小菜鸟加油加油完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186482
求助须知:如何正确求助?哪些是违规求助? 4371698
关于积分的说明 13612443
捐赠科研通 4224251
什么是DOI,文献DOI怎么找? 2316914
邀请新用户注册赠送积分活动 1315572
关于科研通互助平台的介绍 1264764