Automatic Detection of Meniscus Tears Using Backbone Convolutional Neural Networks on Knee MRI

接收机工作特性 磁共振成像 卷积神经网络 计算机科学 弯月面 冠状面 矢状面 数据集 人工智能 威尔科克森符号秩检验 判别式 曼惠特尼U检验 医学 核医学 模式识别(心理学) 放射科 机器学习 数学 内科学 几何学 入射(几何)
作者
Truong Nguyen Khanh Hung,Vu Pham Thao Vy,Nguyễn Minh Trí,Le Ngoc Hoang,Lê Văn Tuấn,Quang‐Thai Ho,Nguyen Quoc Khanh Le,Jiunn‐Horng Kang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:57 (3): 740-749 被引量:19
标识
DOI:10.1002/jmri.28284
摘要

Background Timely diagnosis of meniscus injuries is key for preventing knee joint dysfunction and improving patient outcomes because it decreases morbidity and facilitates treatment planning. Purpose To train and evaluate a deep learning model for automated detection of meniscus tears on knee magnetic resonance imaging (MRI). Study type Bicentric retrospective study. Subjects In total, 584 knee MRI studies, divided among training ( n = 234), testing ( n = 200), and external validation ( n = 150) data sets, were used in this study. The public data set MRNet was used as a second external validation data set to evaluate the performance of the model. Sequence A 3 T, coronal, and sagittal images from T1‐weighted proton density (PD) fast spin‐echo (FSE) with fat saturation and T2‐weighted FSE with fat saturation sequences. Assessment The detection system for meniscus tear was based on the improved YOLOv4 model with Darknet‐53 as the backbone. The performance of the model was also compared with that of three radiologists of varying levels of experience. The determination of the presence of a meniscus tear from surgery reports was used as the ground truth for the images. Statistical Tests Sensitivity, specificity, prevalence, positive predictive value, negative predictive value, accuracy, and receiver operating characteristic curve were used to evaluate the performance of the detection model. Two‐way analysis of variance, Wilcoxon signed‐rank test, and Tukey's multiple tests were used to evaluate differences in performance between the model and radiologists. Results The overall accuracies for detecting meniscus tears using our model on the internal testing, internal validation, and external validation data sets were 95.4%, 95.8%, and 78.8%, respectively. One radiologist had significantly lower performance than our model in detecting meniscal tears (accuracy: 0.9025 ± 0.093 vs. 0.9580 ± 0.025). Data Conclusion The proposed model had high sensitivity, specificity, and accuracy for detecting meniscus tears on knee MRIs. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助科研通管家采纳,获得10
刚刚
刚刚
orixero应助科研通管家采纳,获得10
刚刚
控制小弟应助科研通管家采纳,获得10
刚刚
1秒前
SciGPT应助从容的幻然采纳,获得30
1秒前
无情念之完成签到,获得积分20
1秒前
YL完成签到,获得积分10
1秒前
1秒前
京言完成签到,获得积分10
1秒前
小宇发布了新的文献求助10
2秒前
2秒前
大胆的小白菜完成签到,获得积分10
2秒前
不是省油的灯完成签到,获得积分10
3秒前
小管完成签到,获得积分20
3秒前
niu1发布了新的文献求助10
3秒前
夏泽水梦完成签到,获得积分10
5秒前
老实的半山完成签到,获得积分10
5秒前
指纹抒写年轮完成签到,获得积分10
5秒前
愉快的哈密瓜完成签到,获得积分10
5秒前
小小发布了新的文献求助10
5秒前
小二郎应助成就缘分采纳,获得10
5秒前
6秒前
看看文献吧完成签到,获得积分10
6秒前
啵啵发布了新的文献求助10
6秒前
7秒前
初吻还在发布了新的文献求助10
7秒前
哇哦发布了新的文献求助10
8秒前
李唯佳发布了新的文献求助10
8秒前
8秒前
酷波er应助渊思采纳,获得10
8秒前
8秒前
罗mian完成签到,获得积分10
9秒前
9秒前
WUJIAYU完成签到 ,获得积分10
10秒前
小蘑菇应助小汤圆采纳,获得10
11秒前
认真的小熊饼干完成签到,获得积分10
11秒前
Grayball应助蒙开心采纳,获得10
11秒前
11秒前
真开心完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672