清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automatic Detection of Meniscus Tears Using Backbone Convolutional Neural Networks on Knee MRI

接收机工作特性 磁共振成像 卷积神经网络 计算机科学 弯月面 冠状面 矢状面 数据集 人工智能 威尔科克森符号秩检验 判别式 曼惠特尼U检验 医学 核医学 放射科 机器学习 数学 统计 入射(几何) 几何学
作者
Truong Nguyen Khanh Hung,Vu Pham Thao Vy,Nguyễn Minh Trí,Le Ngoc Hoang,Lê Văn Tuấn,Quang Thai Ho,Nguyen Quoc Khanh Le,Jiunn‐Horng Kang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:57 (3): 740-749 被引量:28
标识
DOI:10.1002/jmri.28284
摘要

Background Timely diagnosis of meniscus injuries is key for preventing knee joint dysfunction and improving patient outcomes because it decreases morbidity and facilitates treatment planning. Purpose To train and evaluate a deep learning model for automated detection of meniscus tears on knee magnetic resonance imaging (MRI). Study type Bicentric retrospective study. Subjects In total, 584 knee MRI studies, divided among training ( n = 234), testing ( n = 200), and external validation ( n = 150) data sets, were used in this study. The public data set MRNet was used as a second external validation data set to evaluate the performance of the model. Sequence A 3 T, coronal, and sagittal images from T1‐weighted proton density (PD) fast spin‐echo (FSE) with fat saturation and T2‐weighted FSE with fat saturation sequences. Assessment The detection system for meniscus tear was based on the improved YOLOv4 model with Darknet‐53 as the backbone. The performance of the model was also compared with that of three radiologists of varying levels of experience. The determination of the presence of a meniscus tear from surgery reports was used as the ground truth for the images. Statistical Tests Sensitivity, specificity, prevalence, positive predictive value, negative predictive value, accuracy, and receiver operating characteristic curve were used to evaluate the performance of the detection model. Two‐way analysis of variance, Wilcoxon signed‐rank test, and Tukey's multiple tests were used to evaluate differences in performance between the model and radiologists. Results The overall accuracies for detecting meniscus tears using our model on the internal testing, internal validation, and external validation data sets were 95.4%, 95.8%, and 78.8%, respectively. One radiologist had significantly lower performance than our model in detecting meniscal tears (accuracy: 0.9025 ± 0.093 vs. 0.9580 ± 0.025). Data Conclusion The proposed model had high sensitivity, specificity, and accuracy for detecting meniscus tears on knee MRIs. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
量子星尘发布了新的文献求助10
20秒前
27秒前
紫熊完成签到,获得积分10
46秒前
1分钟前
111完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
矢思然完成签到,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
3分钟前
小花匠发布了新的文献求助50
4分钟前
呃呃呃呃呃完成签到 ,获得积分10
4分钟前
冷傲半邪完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
紫熊发布了新的文献求助10
5分钟前
张同学快去做实验呀完成签到,获得积分10
5分钟前
5分钟前
紫熊发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
Dreamhappy完成签到,获得积分10
6分钟前
George完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
老石完成签到 ,获得积分10
7分钟前
8分钟前
宇文非笑完成签到 ,获得积分10
8分钟前
8分钟前
着急的松发布了新的文献求助10
8分钟前
着急的松完成签到,获得积分10
8分钟前
8分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
深情安青应助科研通管家采纳,获得10
9分钟前
9分钟前
10分钟前
10分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008393
求助须知:如何正确求助?哪些是违规求助? 3548117
关于积分的说明 11298711
捐赠科研通 3282900
什么是DOI,文献DOI怎么找? 1810258
邀请新用户注册赠送积分活动 885975
科研通“疑难数据库(出版商)”最低求助积分说明 811209