Personalized auto‐segmentation for magnetic resonance imaging–guided adaptive radiotherapy of prostate cancer

磁共振成像 分割 前列腺癌 人口 Sørensen–骰子系数 前列腺 图像分割 人工智能 计算机科学 卷积神经网络 数据集 医学 放射治疗 核医学 放射科 癌症 内科学 环境卫生
作者
Xinyuan Chen,Xiangyu Ma,Xingchen Yan,Fei Luo,Shiyou Yang,Zekun Wang,Runye Wu,Jianyang Wang,Ningning Lu,Nan Bi,Junlin Yi,Shulian Wang,Yexiong Li,Jianrong Dai,Kuo Men
出处
期刊:Medical Physics [Wiley]
卷期号:49 (8): 4971-4979 被引量:14
标识
DOI:10.1002/mp.15793
摘要

Fast and accurate delineation of organs on treatment-fraction images is critical in magnetic resonance imaging-guided adaptive radiotherapy (MRIgART). This study proposes a personalized auto-segmentation (AS) framework to assist online delineation of prostate cancer using MRIgART.Image data from 26 patients diagnosed with prostate cancer and treated using hypofractionated MRIgART (5 fractions per patient) were collected retrospectively. Daily pretreatment T2-weighted MRI was performed using a 1.5-T MRI system integrated into a Unity MR-linac. First-fraction image and contour data from 16 patients (80 image-sets) were used to train the population AS model, and the remaining 10 patients composed the test set. The proposed personalized AS framework contained two main steps. First, a convolutional neural network was employed to train the population model using the training set. Second, for each test patient, the population model was progressively fine-tuned with manually checked delineations of the patient's current and previous fractions to obtain a personalized model that was applied to the next fraction.Compared with the population model, the personalized models substantially improved the mean Dice similarity coefficient from 0.79 to 0.93 for the prostate clinical target volume (CTV), 0.91 to 0.97 for the bladder, 0.82 to 0.92 for the rectum, and 0.91 to 0.93 for the femoral heads, respectively.The proposed method can achieve accurate segmentation and potentially shorten the overall online delineation time of MRIgART.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助mofeik采纳,获得10
刚刚
超级梦寒发布了新的文献求助10
1秒前
1秒前
Tobiuo完成签到,获得积分10
1秒前
元谷雪发布了新的文献求助10
1秒前
砺行应助RA000采纳,获得10
1秒前
王sy完成签到 ,获得积分10
2秒前
深蓝完成签到,获得积分10
3秒前
3秒前
阳光不二完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
guo发布了新的文献求助10
7秒前
爱科研168完成签到,获得积分10
7秒前
现代尔芙完成签到 ,获得积分10
7秒前
沐雪完成签到,获得积分10
7秒前
7秒前
考博圣体发布了新的文献求助10
7秒前
李健的粉丝团团长应助tgg采纳,获得10
8秒前
8秒前
搜集达人应助人机采纳,获得10
9秒前
9秒前
所所应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
sss发布了新的文献求助10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
lzz完成签到,获得积分10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
Return应助科研通管家采纳,获得10
10秒前
求助人员应助南风采纳,获得30
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
寻道图强应助科研通管家采纳,获得50
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360