Personalized auto‐segmentation for magnetic resonance imaging–guided adaptive radiotherapy of prostate cancer

磁共振成像 分割 前列腺癌 人口 Sørensen–骰子系数 前列腺 图像分割 人工智能 计算机科学 卷积神经网络 数据集 医学 放射治疗 核医学 放射科 癌症 内科学 环境卫生
作者
Xinyuan Chen,Xiangyu Ma,Xingchen Yan,Fei Luo,Shiyou Yang,Zekun Wang,Runye Wu,Jianyang Wang,Ningning Lu,Nan Bi,Junlin Yi,Shulian Wang,Yexiong Li,Jianrong Dai,Kuo Men
出处
期刊:Medical Physics [Wiley]
卷期号:49 (8): 4971-4979 被引量:14
标识
DOI:10.1002/mp.15793
摘要

Fast and accurate delineation of organs on treatment-fraction images is critical in magnetic resonance imaging-guided adaptive radiotherapy (MRIgART). This study proposes a personalized auto-segmentation (AS) framework to assist online delineation of prostate cancer using MRIgART.Image data from 26 patients diagnosed with prostate cancer and treated using hypofractionated MRIgART (5 fractions per patient) were collected retrospectively. Daily pretreatment T2-weighted MRI was performed using a 1.5-T MRI system integrated into a Unity MR-linac. First-fraction image and contour data from 16 patients (80 image-sets) were used to train the population AS model, and the remaining 10 patients composed the test set. The proposed personalized AS framework contained two main steps. First, a convolutional neural network was employed to train the population model using the training set. Second, for each test patient, the population model was progressively fine-tuned with manually checked delineations of the patient's current and previous fractions to obtain a personalized model that was applied to the next fraction.Compared with the population model, the personalized models substantially improved the mean Dice similarity coefficient from 0.79 to 0.93 for the prostate clinical target volume (CTV), 0.91 to 0.97 for the bladder, 0.82 to 0.92 for the rectum, and 0.91 to 0.93 for the femoral heads, respectively.The proposed method can achieve accurate segmentation and potentially shorten the overall online delineation time of MRIgART.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lsw发布了新的文献求助10
刚刚
CipherSage应助五月天采纳,获得10
刚刚
FashionBoy应助王明磊采纳,获得10
1秒前
嘿嘿发布了新的文献求助10
1秒前
研友_wZr5Rn发布了新的文献求助10
3秒前
儒雅三问完成签到 ,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
tinner完成签到,获得积分10
6秒前
buno发布了新的文献求助10
7秒前
完美世界应助YCleeeee采纳,获得10
7秒前
汉堡包应助YAN采纳,获得10
7秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
11秒前
桐桐应助3号球衣采纳,获得10
12秒前
12秒前
CCTwoo完成签到,获得积分10
14秒前
挽晨完成签到 ,获得积分10
14秒前
酷波er应助ZKai采纳,获得10
14秒前
关中人完成签到,获得积分10
14秒前
zf2023发布了新的文献求助30
15秒前
可爱的函函应助牛牛采纳,获得10
15秒前
17秒前
19秒前
21秒前
22秒前
慕青应助whytcs采纳,获得10
22秒前
22秒前
东都哈士奇完成签到,获得积分10
22秒前
一叶知秋完成签到,获得积分10
23秒前
23秒前
LYF000666发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
24秒前
LMZ发布了新的文献求助30
25秒前
Ava应助依米zhang采纳,获得30
26秒前
26秒前
26秒前
MYC007完成签到 ,获得积分10
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705070
求助须知:如何正确求助?哪些是违规求助? 5160498
关于积分的说明 15243798
捐赠科研通 4858886
什么是DOI,文献DOI怎么找? 2607466
邀请新用户注册赠送积分活动 1558571
关于科研通互助平台的介绍 1516188