Personalized auto‐segmentation for magnetic resonance imaging–guided adaptive radiotherapy of prostate cancer

磁共振成像 分割 前列腺癌 人口 Sørensen–骰子系数 前列腺 图像分割 人工智能 计算机科学 卷积神经网络 数据集 医学 放射治疗 核医学 放射科 癌症 内科学 环境卫生
作者
Xinyuan Chen,Xiangyu Ma,Xingchen Yan,Fei Luo,Shiyou Yang,Zekun Wang,Runye Wu,Jianyang Wang,Ningning Lu,Nan Bi,Junlin Yi,Shulian Wang,Yexiong Li,Jianrong Dai,Kuo Men
出处
期刊:Medical Physics [Wiley]
卷期号:49 (8): 4971-4979 被引量:14
标识
DOI:10.1002/mp.15793
摘要

Fast and accurate delineation of organs on treatment-fraction images is critical in magnetic resonance imaging-guided adaptive radiotherapy (MRIgART). This study proposes a personalized auto-segmentation (AS) framework to assist online delineation of prostate cancer using MRIgART.Image data from 26 patients diagnosed with prostate cancer and treated using hypofractionated MRIgART (5 fractions per patient) were collected retrospectively. Daily pretreatment T2-weighted MRI was performed using a 1.5-T MRI system integrated into a Unity MR-linac. First-fraction image and contour data from 16 patients (80 image-sets) were used to train the population AS model, and the remaining 10 patients composed the test set. The proposed personalized AS framework contained two main steps. First, a convolutional neural network was employed to train the population model using the training set. Second, for each test patient, the population model was progressively fine-tuned with manually checked delineations of the patient's current and previous fractions to obtain a personalized model that was applied to the next fraction.Compared with the population model, the personalized models substantially improved the mean Dice similarity coefficient from 0.79 to 0.93 for the prostate clinical target volume (CTV), 0.91 to 0.97 for the bladder, 0.82 to 0.92 for the rectum, and 0.91 to 0.93 for the femoral heads, respectively.The proposed method can achieve accurate segmentation and potentially shorten the overall online delineation time of MRIgART.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
城北徐公发布了新的文献求助50
1秒前
大模型应助尔多龙采纳,获得10
1秒前
光催完成签到,获得积分10
1秒前
2秒前
调皮的海之完成签到,获得积分10
2秒前
浮游应助谷粱紫槐采纳,获得10
2秒前
异乡人完成签到,获得积分10
2秒前
Boffican发布了新的文献求助10
3秒前
zhonglv7应助勤奋谷梦采纳,获得10
3秒前
悦耳的三毒完成签到,获得积分10
3秒前
科研通AI6应助虾仁炒饭采纳,获得10
4秒前
科研小白发布了新的文献求助10
4秒前
漂亮半兰完成签到,获得积分10
4秒前
5秒前
刻苦惜萍发布了新的文献求助10
6秒前
奋斗灵珊完成签到,获得积分10
6秒前
呆萌的凡完成签到,获得积分10
6秒前
在吃饭的时候吃饭完成签到,获得积分10
6秒前
7秒前
7秒前
漂亮半兰发布了新的文献求助20
7秒前
8秒前
8秒前
8秒前
9秒前
慕青应助风清扬采纳,获得10
9秒前
9秒前
cc完成签到,获得积分10
10秒前
10秒前
852应助lql采纳,获得10
10秒前
10秒前
10秒前
11秒前
sss完成签到,获得积分10
11秒前
呆萌的悲发布了新的文献求助10
12秒前
wangjie发布了新的文献求助10
12秒前
Lengbo发布了新的文献求助10
12秒前
文静的巨人完成签到,获得积分20
12秒前
13秒前
anhui完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123034
求助须知:如何正确求助?哪些是违规求助? 4327617
关于积分的说明 13484959
捐赠科研通 4161732
什么是DOI,文献DOI怎么找? 2281010
邀请新用户注册赠送积分活动 1282501
关于科研通互助平台的介绍 1221550