Personalized auto‐segmentation for magnetic resonance imaging–guided adaptive radiotherapy of prostate cancer

磁共振成像 分割 前列腺癌 人口 Sørensen–骰子系数 前列腺 图像分割 人工智能 计算机科学 卷积神经网络 数据集 医学 放射治疗 核医学 放射科 癌症 内科学 环境卫生
作者
Xinyuan Chen,Xiangyu Ma,Xingchen Yan,Fei Luo,Shiyou Yang,Zekun Wang,Runye Wu,Jianyang Wang,Ningning Lu,Nan Bi,Junlin Yi,Shulian Wang,Yexiong Li,Jianrong Dai,Kuo Men
出处
期刊:Medical Physics [Wiley]
卷期号:49 (8): 4971-4979 被引量:14
标识
DOI:10.1002/mp.15793
摘要

Fast and accurate delineation of organs on treatment-fraction images is critical in magnetic resonance imaging-guided adaptive radiotherapy (MRIgART). This study proposes a personalized auto-segmentation (AS) framework to assist online delineation of prostate cancer using MRIgART.Image data from 26 patients diagnosed with prostate cancer and treated using hypofractionated MRIgART (5 fractions per patient) were collected retrospectively. Daily pretreatment T2-weighted MRI was performed using a 1.5-T MRI system integrated into a Unity MR-linac. First-fraction image and contour data from 16 patients (80 image-sets) were used to train the population AS model, and the remaining 10 patients composed the test set. The proposed personalized AS framework contained two main steps. First, a convolutional neural network was employed to train the population model using the training set. Second, for each test patient, the population model was progressively fine-tuned with manually checked delineations of the patient's current and previous fractions to obtain a personalized model that was applied to the next fraction.Compared with the population model, the personalized models substantially improved the mean Dice similarity coefficient from 0.79 to 0.93 for the prostate clinical target volume (CTV), 0.91 to 0.97 for the bladder, 0.82 to 0.92 for the rectum, and 0.91 to 0.93 for the femoral heads, respectively.The proposed method can achieve accurate segmentation and potentially shorten the overall online delineation time of MRIgART.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助失眠亦寒采纳,获得10
1秒前
TIAN完成签到,获得积分10
2秒前
2秒前
专注的妍发布了新的文献求助20
2秒前
肖浩翔完成签到,获得积分10
3秒前
Stella应助仲滋滋采纳,获得20
4秒前
W85发布了新的文献求助10
5秒前
科研通AI6应助屋顶橙子味采纳,获得10
5秒前
求助人员发布了新的文献求助10
5秒前
在水一方应助sxt采纳,获得10
6秒前
迷你的珠发布了新的文献求助10
6秒前
懦弱的寄灵完成签到 ,获得积分10
7秒前
柏林寒冬应助xx采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
六蒙骑士完成签到,获得积分10
12秒前
12秒前
Zx_1993应助zxvcbnm采纳,获得10
13秒前
李健的小迷弟应助577采纳,获得10
13秒前
义气飞机完成签到,获得积分10
13秒前
15秒前
15秒前
传奇3应助555采纳,获得10
15秒前
berg发布了新的文献求助10
15秒前
16秒前
16秒前
hebishan完成签到,获得积分10
16秒前
仲滋滋完成签到,获得积分10
16秒前
不配.应助Li采纳,获得80
17秒前
17秒前
科研通AI6应助W85采纳,获得30
18秒前
zhoukang应助W85采纳,获得30
18秒前
科研通AI6应助W85采纳,获得30
18秒前
郭小宇发布了新的文献求助10
18秒前
热心幻天发布了新的文献求助10
19秒前
Owen应助江湖樊南生采纳,获得10
20秒前
liu完成签到,获得积分10
20秒前
霍则风发布了新的文献求助10
21秒前
check003完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594252
求助须知:如何正确求助?哪些是违规求助? 4679915
关于积分的说明 14812161
捐赠科研通 4646417
什么是DOI,文献DOI怎么找? 2534795
邀请新用户注册赠送积分活动 1502804
关于科研通互助平台的介绍 1469490