HPE-GCN: Predicting efficacy of tonic formulae via graph convolutional networks integrating traditionally defined herbal properties

计算机科学 加权 支持向量机 朴素贝叶斯分类器 数学 决策树 人工智能 传统医学 机器学习 医学 放射科
作者
Jiajun Liu,Qunfu Huang,Xiaoyan Yang,Changsong Ding
出处
期刊:Methods [Elsevier]
卷期号:204: 101-109 被引量:7
标识
DOI:10.1016/j.ymeth.2022.05.003
摘要

Chinese herbal formulae are the heritage of traditional Chinese medicine (TCM) in treating diseases through thousands of years. The formula function is not just a simple herbal efficacy addition, but produces complex and nonlinear relationships between different herbs and their overall efficacy, which brings challenges to the formula efficacy analysis. In our study, we proposed a model called HPE-GCN that combines graph convolutional networks (GCN) with TCM-defined herbal properties (TCM-HPs) to predict formulae efficacy. In addition, to process the unstructured natural language in the formula text, we proposed a weighting calculation method related to herb frequency and the number of herbs in a formula called Formula-Herb dependence degree (FHDD), to assess the dependency degree of a formula with its herbs. In our research, 214 classic tonic formulae from ancient TCM books such as Synopsis of the Golden Chamber, Jingyue's Complete Works and the Golden Mirror of Medicin were collected as datasets. The performance of HPE-GCN on multi-classification of tonic formulae reached the best result compared with classic machine learning models, such as support vector machine, naive Bayes, logistic regression, gradient boosting decision tree, and K-nearest neighbors. The evaluated index Macro-Precision, Macro-Recall, Macro-F1 of HPE-GCN on the test set were 87.70%, 84.08% and 83.51% respectively, increased by 7.27%, 7.41% and 7.30% respectively from second best compared models. GCN has the advantage of low-dimensional feature expression for herbs and formulae, and is an effective analysis tool for TCM research. HPE-GCN integrates TCM-HPs and fits the complex nonlinear mapping relationship between TCM-HPs and formulae efficacy, which provides new ideas for related research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海棠依旧完成签到,获得积分20
1秒前
吡啶应助王小红采纳,获得20
1秒前
cuduoduo给cuduoduo的求助进行了留言
2秒前
Ouyang完成签到 ,获得积分10
4秒前
英俊安荷发布了新的文献求助10
5秒前
写小人物的大作家完成签到,获得积分10
5秒前
999发布了新的文献求助10
6秒前
9秒前
10秒前
海棠依旧发布了新的文献求助10
13秒前
温朋涛发布了新的文献求助10
14秒前
BOOMKING发布了新的文献求助10
14秒前
14秒前
15秒前
17秒前
ayan完成签到,获得积分20
20秒前
NexusExplorer应助葡萄成熟采纳,获得10
21秒前
21秒前
22秒前
1234完成签到 ,获得积分10
24秒前
你啊啊关注了科研通微信公众号
24秒前
思源应助leyellows采纳,获得10
25秒前
心杨发布了新的文献求助10
25秒前
江河湖海完成签到 ,获得积分10
26秒前
123发布了新的文献求助20
26秒前
斯文败类应助小先生采纳,获得10
26秒前
阿荷荷发布了新的文献求助30
29秒前
乐的绿色斑马完成签到 ,获得积分10
30秒前
乐乐应助999采纳,获得10
30秒前
L061114完成签到 ,获得积分10
31秒前
细腻问柳发布了新的文献求助10
32秒前
wanci应助科研通管家采纳,获得10
32秒前
今后应助科研通管家采纳,获得30
32秒前
orixero应助科研通管家采纳,获得10
32秒前
orixero应助科研通管家采纳,获得10
32秒前
深情安青应助科研通管家采纳,获得10
32秒前
澈哩应助科研通管家采纳,获得10
32秒前
桐桐应助科研通管家采纳,获得10
32秒前
Orange应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157384
求助须知:如何正确求助?哪些是违规求助? 2808832
关于积分的说明 7878535
捐赠科研通 2467168
什么是DOI,文献DOI怎么找? 1313255
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919