HPE-GCN: Predicting efficacy of tonic formulae via graph convolutional networks integrating traditionally defined herbal properties

计算机科学 加权 支持向量机 朴素贝叶斯分类器 数学 决策树 人工智能 传统医学 机器学习 医学 放射科
作者
Jiajun Liu,Qunfu Huang,Xiaoyan Yang,Changsong Ding
出处
期刊:Methods [Elsevier]
卷期号:204: 101-109 被引量:7
标识
DOI:10.1016/j.ymeth.2022.05.003
摘要

Chinese herbal formulae are the heritage of traditional Chinese medicine (TCM) in treating diseases through thousands of years. The formula function is not just a simple herbal efficacy addition, but produces complex and nonlinear relationships between different herbs and their overall efficacy, which brings challenges to the formula efficacy analysis. In our study, we proposed a model called HPE-GCN that combines graph convolutional networks (GCN) with TCM-defined herbal properties (TCM-HPs) to predict formulae efficacy. In addition, to process the unstructured natural language in the formula text, we proposed a weighting calculation method related to herb frequency and the number of herbs in a formula called Formula-Herb dependence degree (FHDD), to assess the dependency degree of a formula with its herbs. In our research, 214 classic tonic formulae from ancient TCM books such as Synopsis of the Golden Chamber, Jingyue's Complete Works and the Golden Mirror of Medicin were collected as datasets. The performance of HPE-GCN on multi-classification of tonic formulae reached the best result compared with classic machine learning models, such as support vector machine, naive Bayes, logistic regression, gradient boosting decision tree, and K-nearest neighbors. The evaluated index Macro-Precision, Macro-Recall, Macro-F1 of HPE-GCN on the test set were 87.70%, 84.08% and 83.51% respectively, increased by 7.27%, 7.41% and 7.30% respectively from second best compared models. GCN has the advantage of low-dimensional feature expression for herbs and formulae, and is an effective analysis tool for TCM research. HPE-GCN integrates TCM-HPs and fits the complex nonlinear mapping relationship between TCM-HPs and formulae efficacy, which provides new ideas for related research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单安南发布了新的文献求助10
刚刚
刚刚
qc发布了新的文献求助30
1秒前
一粒荷兰豆完成签到,获得积分10
1秒前
Mic应助科研通管家采纳,获得10
3秒前
包容的若风完成签到,获得积分10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
张丽妍发布了新的文献求助30
3秒前
3秒前
3秒前
3秒前
3秒前
江南第八发布了新的文献求助10
3秒前
打打应助科研通管家采纳,获得10
4秒前
旁观者应助科研通管家采纳,获得10
4秒前
Wang完成签到,获得积分10
4秒前
今后应助科研通管家采纳,获得30
4秒前
4秒前
无花果应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
一壶古酒应助SCurry3rain采纳,获得50
5秒前
Mic应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
英姑应助Jupiter 1234采纳,获得10
5秒前
MM应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
芝士发布了新的文献求助10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
5秒前
坚强的蔷薇薇完成签到 ,获得积分10
6秒前
田様应助科研通管家采纳,获得10
6秒前
6秒前
Jasper应助Shan采纳,获得10
6秒前
Mic应助科研通管家采纳,获得10
6秒前
明理可燕完成签到,获得积分10
6秒前
6秒前
Mic应助科研通管家采纳,获得10
6秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743471
求助须知:如何正确求助?哪些是违规求助? 5414214
关于积分的说明 15347603
捐赠科研通 4884202
什么是DOI,文献DOI怎么找? 2625645
邀请新用户注册赠送积分活动 1574504
关于科研通互助平台的介绍 1531414