HPE-GCN: Predicting efficacy of tonic formulae via graph convolutional networks integrating traditionally defined herbal properties

计算机科学 加权 支持向量机 朴素贝叶斯分类器 数学 决策树 人工智能 传统医学 机器学习 医学 放射科
作者
Jiajun Liu,Qunfu Huang,Xiaoyan Yang,Changsong Ding
出处
期刊:Methods [Elsevier BV]
卷期号:204: 101-109 被引量:7
标识
DOI:10.1016/j.ymeth.2022.05.003
摘要

Chinese herbal formulae are the heritage of traditional Chinese medicine (TCM) in treating diseases through thousands of years. The formula function is not just a simple herbal efficacy addition, but produces complex and nonlinear relationships between different herbs and their overall efficacy, which brings challenges to the formula efficacy analysis. In our study, we proposed a model called HPE-GCN that combines graph convolutional networks (GCN) with TCM-defined herbal properties (TCM-HPs) to predict formulae efficacy. In addition, to process the unstructured natural language in the formula text, we proposed a weighting calculation method related to herb frequency and the number of herbs in a formula called Formula-Herb dependence degree (FHDD), to assess the dependency degree of a formula with its herbs. In our research, 214 classic tonic formulae from ancient TCM books such as Synopsis of the Golden Chamber, Jingyue's Complete Works and the Golden Mirror of Medicin were collected as datasets. The performance of HPE-GCN on multi-classification of tonic formulae reached the best result compared with classic machine learning models, such as support vector machine, naive Bayes, logistic regression, gradient boosting decision tree, and K-nearest neighbors. The evaluated index Macro-Precision, Macro-Recall, Macro-F1 of HPE-GCN on the test set were 87.70%, 84.08% and 83.51% respectively, increased by 7.27%, 7.41% and 7.30% respectively from second best compared models. GCN has the advantage of low-dimensional feature expression for herbs and formulae, and is an effective analysis tool for TCM research. HPE-GCN integrates TCM-HPs and fits the complex nonlinear mapping relationship between TCM-HPs and formulae efficacy, which provides new ideas for related research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助LL采纳,获得10
刚刚
gecumk发布了新的文献求助10
3秒前
3秒前
甜美梦槐发布了新的文献求助10
3秒前
4秒前
星辰大海应助Tracer采纳,获得10
4秒前
逍遥完成签到,获得积分10
5秒前
Tristan完成签到 ,获得积分10
5秒前
丽平发布了新的文献求助10
6秒前
6秒前
7秒前
yeah18完成签到 ,获得积分10
8秒前
ciallo完成签到,获得积分10
9秒前
连渡完成签到,获得积分10
9秒前
9秒前
及时雨完成签到 ,获得积分10
10秒前
枪王阿绣完成签到 ,获得积分10
10秒前
yuyuyu完成签到,获得积分10
10秒前
gecumk完成签到,获得积分10
11秒前
悦耳亦云完成签到 ,获得积分10
12秒前
12秒前
12秒前
犹豫大侠发布了新的文献求助10
12秒前
tcmlida完成签到,获得积分10
12秒前
OMIT完成签到,获得积分10
12秒前
13秒前
13秒前
群青完成签到 ,获得积分10
16秒前
16秒前
易琚完成签到,获得积分10
16秒前
16秒前
西西发布了新的文献求助10
16秒前
八九完成签到 ,获得积分10
17秒前
朝暮完成签到 ,获得积分10
18秒前
Hello应助lsz采纳,获得10
18秒前
丘比特应助将妄采纳,获得10
19秒前
19秒前
Gavin啥也不会完成签到,获得积分10
20秒前
wanz发布了新的文献求助10
21秒前
圈圈完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911110
求助须知:如何正确求助?哪些是违规求助? 4186617
关于积分的说明 13000608
捐赠科研通 3954386
什么是DOI,文献DOI怎么找? 2168285
邀请新用户注册赠送积分活动 1186699
关于科研通互助平台的介绍 1094037