HPE-GCN: Predicting efficacy of tonic formulae via graph convolutional networks integrating traditionally defined herbal properties

计算机科学 加权 支持向量机 朴素贝叶斯分类器 数学 决策树 人工智能 传统医学 机器学习 医学 放射科
作者
Jiajun Liu,Qunfu Huang,Xiaoyan Yang,Changsong Ding
出处
期刊:Methods [Elsevier]
卷期号:204: 101-109 被引量:7
标识
DOI:10.1016/j.ymeth.2022.05.003
摘要

Chinese herbal formulae are the heritage of traditional Chinese medicine (TCM) in treating diseases through thousands of years. The formula function is not just a simple herbal efficacy addition, but produces complex and nonlinear relationships between different herbs and their overall efficacy, which brings challenges to the formula efficacy analysis. In our study, we proposed a model called HPE-GCN that combines graph convolutional networks (GCN) with TCM-defined herbal properties (TCM-HPs) to predict formulae efficacy. In addition, to process the unstructured natural language in the formula text, we proposed a weighting calculation method related to herb frequency and the number of herbs in a formula called Formula-Herb dependence degree (FHDD), to assess the dependency degree of a formula with its herbs. In our research, 214 classic tonic formulae from ancient TCM books such as Synopsis of the Golden Chamber, Jingyue's Complete Works and the Golden Mirror of Medicin were collected as datasets. The performance of HPE-GCN on multi-classification of tonic formulae reached the best result compared with classic machine learning models, such as support vector machine, naive Bayes, logistic regression, gradient boosting decision tree, and K-nearest neighbors. The evaluated index Macro-Precision, Macro-Recall, Macro-F1 of HPE-GCN on the test set were 87.70%, 84.08% and 83.51% respectively, increased by 7.27%, 7.41% and 7.30% respectively from second best compared models. GCN has the advantage of low-dimensional feature expression for herbs and formulae, and is an effective analysis tool for TCM research. HPE-GCN integrates TCM-HPs and fits the complex nonlinear mapping relationship between TCM-HPs and formulae efficacy, which provides new ideas for related research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Teddyfeeder完成签到,获得积分10
1秒前
1秒前
科研通AI6应助aaaaaYue采纳,获得10
1秒前
JamesPei应助linkman采纳,获得10
1秒前
2秒前
tang完成签到,获得积分20
3秒前
3秒前
4秒前
BGWZSG完成签到,获得积分20
4秒前
4秒前
在水一方应助haha采纳,获得10
4秒前
4秒前
5秒前
Lv发布了新的文献求助10
5秒前
5秒前
xiaozhou完成签到,获得积分10
5秒前
6秒前
积极的笙发布了新的文献求助10
6秒前
sing发布了新的文献求助10
7秒前
WAHAHAoo发布了新的文献求助10
7秒前
8秒前
8秒前
livian完成签到,获得积分10
8秒前
8秒前
9秒前
悦耳的襄发布了新的文献求助10
9秒前
NE555完成签到,获得积分10
9秒前
10秒前
DUhn发布了新的文献求助10
10秒前
风清扬应助王铭轩采纳,获得10
10秒前
舒心的冷安完成签到,获得积分10
10秒前
fyjlfy发布了新的文献求助10
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
Wannnnqi发布了新的文献求助10
11秒前
糖小白完成签到,获得积分10
12秒前
fff发布了新的文献求助10
12秒前
Danboard发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468557
求助须知:如何正确求助?哪些是违规求助? 4571954
关于积分的说明 14332897
捐赠科研通 4498650
什么是DOI,文献DOI怎么找? 2464664
邀请新用户注册赠送积分活动 1453302
关于科研通互助平台的介绍 1427914