HPE-GCN: Predicting efficacy of tonic formulae via graph convolutional networks integrating traditionally defined herbal properties

计算机科学 加权 支持向量机 朴素贝叶斯分类器 数学 决策树 人工智能 传统医学 机器学习 医学 放射科
作者
Jiajun Liu,Qunfu Huang,Xiaoyan Yang,Changsong Ding
出处
期刊:Methods [Elsevier BV]
卷期号:204: 101-109 被引量:7
标识
DOI:10.1016/j.ymeth.2022.05.003
摘要

Chinese herbal formulae are the heritage of traditional Chinese medicine (TCM) in treating diseases through thousands of years. The formula function is not just a simple herbal efficacy addition, but produces complex and nonlinear relationships between different herbs and their overall efficacy, which brings challenges to the formula efficacy analysis. In our study, we proposed a model called HPE-GCN that combines graph convolutional networks (GCN) with TCM-defined herbal properties (TCM-HPs) to predict formulae efficacy. In addition, to process the unstructured natural language in the formula text, we proposed a weighting calculation method related to herb frequency and the number of herbs in a formula called Formula-Herb dependence degree (FHDD), to assess the dependency degree of a formula with its herbs. In our research, 214 classic tonic formulae from ancient TCM books such as Synopsis of the Golden Chamber, Jingyue's Complete Works and the Golden Mirror of Medicin were collected as datasets. The performance of HPE-GCN on multi-classification of tonic formulae reached the best result compared with classic machine learning models, such as support vector machine, naive Bayes, logistic regression, gradient boosting decision tree, and K-nearest neighbors. The evaluated index Macro-Precision, Macro-Recall, Macro-F1 of HPE-GCN on the test set were 87.70%, 84.08% and 83.51% respectively, increased by 7.27%, 7.41% and 7.30% respectively from second best compared models. GCN has the advantage of low-dimensional feature expression for herbs and formulae, and is an effective analysis tool for TCM research. HPE-GCN integrates TCM-HPs and fits the complex nonlinear mapping relationship between TCM-HPs and formulae efficacy, which provides new ideas for related research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
61完成签到,获得积分20
刚刚
刚刚
典雅的谷雪完成签到,获得积分10
刚刚
heady完成签到,获得积分10
1秒前
federish发布了新的文献求助10
1秒前
香蕉觅云应助niusama采纳,获得10
1秒前
2秒前
虚幻的彤发布了新的文献求助10
2秒前
研友_ngqyz8完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
simon发布了新的文献求助10
4秒前
yyy完成签到,获得积分10
4秒前
接q辣舞发布了新的文献求助10
4秒前
晚意发布了新的文献求助10
5秒前
赘婿应助小爱同学采纳,获得20
5秒前
我是老大应助murphy采纳,获得10
5秒前
jsy发布了新的文献求助10
6秒前
紧张的砖头完成签到,获得积分10
7秒前
AE86发布了新的文献求助30
7秒前
水是路完成签到,获得积分10
8秒前
8秒前
9秒前
格非发布了新的文献求助10
9秒前
哇哇哇哇我完成签到,获得积分10
9秒前
9秒前
joshar发布了新的文献求助10
9秒前
完美世界应助zhenya采纳,获得10
10秒前
SYLH应助霸气忙内采纳,获得10
10秒前
藿藿完成签到,获得积分10
11秒前
Deerlu完成签到,获得积分10
11秒前
小巧书雪发布了新的文献求助10
11秒前
12秒前
13秒前
ZifuAnzup给ZifuAnzup的求助进行了留言
14秒前
烟花完成签到,获得积分10
14秒前
英俊的铭应助友好的天奇采纳,获得10
14秒前
123完成签到,获得积分10
15秒前
replica完成签到,获得积分10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271