HPE-GCN: Predicting efficacy of tonic formulae via graph convolutional networks integrating traditionally defined herbal properties

计算机科学 加权 支持向量机 朴素贝叶斯分类器 数学 决策树 人工智能 传统医学 机器学习 医学 放射科
作者
Jiajun Liu,Qunfu Huang,Xiaoyan Yang,Changsong Ding
出处
期刊:Methods [Elsevier]
卷期号:204: 101-109 被引量:7
标识
DOI:10.1016/j.ymeth.2022.05.003
摘要

Chinese herbal formulae are the heritage of traditional Chinese medicine (TCM) in treating diseases through thousands of years. The formula function is not just a simple herbal efficacy addition, but produces complex and nonlinear relationships between different herbs and their overall efficacy, which brings challenges to the formula efficacy analysis. In our study, we proposed a model called HPE-GCN that combines graph convolutional networks (GCN) with TCM-defined herbal properties (TCM-HPs) to predict formulae efficacy. In addition, to process the unstructured natural language in the formula text, we proposed a weighting calculation method related to herb frequency and the number of herbs in a formula called Formula-Herb dependence degree (FHDD), to assess the dependency degree of a formula with its herbs. In our research, 214 classic tonic formulae from ancient TCM books such as Synopsis of the Golden Chamber, Jingyue's Complete Works and the Golden Mirror of Medicin were collected as datasets. The performance of HPE-GCN on multi-classification of tonic formulae reached the best result compared with classic machine learning models, such as support vector machine, naive Bayes, logistic regression, gradient boosting decision tree, and K-nearest neighbors. The evaluated index Macro-Precision, Macro-Recall, Macro-F1 of HPE-GCN on the test set were 87.70%, 84.08% and 83.51% respectively, increased by 7.27%, 7.41% and 7.30% respectively from second best compared models. GCN has the advantage of low-dimensional feature expression for herbs and formulae, and is an effective analysis tool for TCM research. HPE-GCN integrates TCM-HPs and fits the complex nonlinear mapping relationship between TCM-HPs and formulae efficacy, which provides new ideas for related research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助勤奋的凝丹采纳,获得10
刚刚
iNk应助寒舒采纳,获得10
刚刚
烟花应助寒舒采纳,获得10
1秒前
1秒前
碧蓝青梦发布了新的文献求助30
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
三岁半发布了新的文献求助10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
枯藤应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
渭水飞熊完成签到,获得积分10
2秒前
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
活力小夏发布了新的文献求助10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
枯藤应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
酷波er应助科研通管家采纳,获得30
3秒前
3秒前
英姑应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得30
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
jian发布了新的文献求助10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
埋头赶路应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759534
求助须知:如何正确求助?哪些是违规求助? 5520722
关于积分的说明 15394460
捐赠科研通 4896615
什么是DOI,文献DOI怎么找? 2633799
邀请新用户注册赠送积分活动 1581879
关于科研通互助平台的介绍 1537300