HPE-GCN: Predicting efficacy of tonic formulae via graph convolutional networks integrating traditionally defined herbal properties

计算机科学 加权 支持向量机 朴素贝叶斯分类器 数学 决策树 人工智能 传统医学 机器学习 医学 放射科
作者
Jiajun Liu,Qunfu Huang,Xiaoyan Yang,Changsong Ding
出处
期刊:Methods [Elsevier]
卷期号:204: 101-109 被引量:7
标识
DOI:10.1016/j.ymeth.2022.05.003
摘要

Chinese herbal formulae are the heritage of traditional Chinese medicine (TCM) in treating diseases through thousands of years. The formula function is not just a simple herbal efficacy addition, but produces complex and nonlinear relationships between different herbs and their overall efficacy, which brings challenges to the formula efficacy analysis. In our study, we proposed a model called HPE-GCN that combines graph convolutional networks (GCN) with TCM-defined herbal properties (TCM-HPs) to predict formulae efficacy. In addition, to process the unstructured natural language in the formula text, we proposed a weighting calculation method related to herb frequency and the number of herbs in a formula called Formula-Herb dependence degree (FHDD), to assess the dependency degree of a formula with its herbs. In our research, 214 classic tonic formulae from ancient TCM books such as Synopsis of the Golden Chamber, Jingyue's Complete Works and the Golden Mirror of Medicin were collected as datasets. The performance of HPE-GCN on multi-classification of tonic formulae reached the best result compared with classic machine learning models, such as support vector machine, naive Bayes, logistic regression, gradient boosting decision tree, and K-nearest neighbors. The evaluated index Macro-Precision, Macro-Recall, Macro-F1 of HPE-GCN on the test set were 87.70%, 84.08% and 83.51% respectively, increased by 7.27%, 7.41% and 7.30% respectively from second best compared models. GCN has the advantage of low-dimensional feature expression for herbs and formulae, and is an effective analysis tool for TCM research. HPE-GCN integrates TCM-HPs and fits the complex nonlinear mapping relationship between TCM-HPs and formulae efficacy, which provides new ideas for related research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
安静羿关注了科研通微信公众号
2秒前
Sakura完成签到 ,获得积分10
2秒前
Vince完成签到,获得积分10
2秒前
3秒前
3秒前
卡皮巴拉不卡屁完成签到 ,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
123完成签到 ,获得积分10
4秒前
老迟到的冬瓜完成签到,获得积分10
4秒前
Melody完成签到,获得积分10
4秒前
4秒前
Jasper应助愉快的莹采纳,获得10
4秒前
badada完成签到,获得积分10
4秒前
Bao_o_o完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
笨蛋小章完成签到,获得积分10
7秒前
7秒前
朱子煊发布了新的文献求助10
7秒前
DNA完成签到,获得积分10
7秒前
梅菜菜发布了新的文献求助10
7秒前
yzz发布了新的文献求助10
7秒前
领导范儿应助duoduo7采纳,获得10
7秒前
CipherSage应助sunshine采纳,获得10
8秒前
我要发Nature完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助30
8秒前
娜娜酱油发布了新的文献求助10
9秒前
10秒前
Bao_o_o发布了新的文献求助10
10秒前
迷路的问蕊完成签到,获得积分20
10秒前
团结友爱发布了新的文献求助10
11秒前
盐烤香鱼完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791