Stabilizing solid electrolyte/Li interface via polymer-in-salt artificial protection layer for high-rate and stable lithium metal batteries

电解质 电化学 锂(药物) 材料科学 金属 化学工程 X射线光电子能谱 准固态 电化学窗口 离子电导率 化学 纳米技术 电极 冶金 物理化学 色素敏化染料 医学 工程类 内分泌学
作者
Long Pan,Shuo Sun,Genxi Yu,Xiong Xiong Liu,Shengfa Feng,Wei Zhang,Muhammadali Turgunov,Yaping Wang,ZhengMing Sun
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:449: 137682-137682 被引量:34
标识
DOI:10.1016/j.cej.2022.137682
摘要

Solid electrolytes are fundamental for next-generation solid-state Li-metal batteries that promise high energy density and safety. However, various solid electrolytes suffer from chemical/electrochemical instability against Li metal and poor interfacial contact with electrodes. Herein, a polymer-in-salt (PiS) artificial protection layer composed of fluoropolymer in highly-concentrated lithium salt (labeled as PiSPL) is introduced to address these problems using NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP) as a typical solid electrolyte. The resulted PiSPL layer exhibits small thickness (10 μm), good chemical/electrochemical stability, and excellent ionic conductivity (0.5 and 1.8 mS cm−1 at 25 and 60 °C, respectively). These properties endow the LATP/Li interface with improved contact, favorable Li+ diffusion, and, most importantly, inhibited interfacial reactions, which is examined using ex-situ X-ray photoelectron spectroscopy and electrochemical analyses and morphological observations. Consequently, Li||[email protected]||Li symmetric cells can deliver small overpotentials at various current densities and long lifetime at 0.16 mA cm−2 over 400 h. On the contrary, the same configuration cells with LATP die after only 50 h. Moreover, the LiFePO4||[email protected]||Li solid-state full cells exhibit excellent rate capability (124.0 mA h g−1 at 2.0C) and cyclability (148.9 and 140.6 mA h g−1 after 200 cycles at 0.2C and 300 cycles at 1.0C, respectively). The PiS strategy represents a general and effective approach to stabilize various solid electrolyte/Li interfaces to push solid-state Li-metal batteries forward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ryt发布了新的文献求助10
刚刚
1秒前
兴奋大船完成签到,获得积分10
1秒前
小马完成签到,获得积分10
1秒前
fancy发布了新的文献求助10
2秒前
怡然的幻灵完成签到,获得积分10
3秒前
星辰大海应助秋向秋采纳,获得10
3秒前
李敬语完成签到,获得积分10
3秒前
Spectrum_07完成签到,获得积分10
4秒前
Cynthia完成签到,获得积分10
4秒前
赘婿应助文龙采纳,获得10
6秒前
聪慧的石头完成签到,获得积分10
6秒前
7秒前
小东同志完成签到,获得积分10
7秒前
7秒前
张同学快去做实验呀完成签到,获得积分10
7秒前
木子木子李完成签到,获得积分10
8秒前
画画完成签到,获得积分10
8秒前
子叶叶子完成签到,获得积分10
8秒前
8秒前
遂安完成签到,获得积分10
9秒前
9秒前
华仔应助z_king_d_23采纳,获得10
9秒前
9秒前
9秒前
苹果发布了新的文献求助10
10秒前
GG发布了新的文献求助10
10秒前
彭于晏应助erhan7采纳,获得30
10秒前
orixero应助meiyugao采纳,获得10
11秒前
亦玉完成签到,获得积分10
11秒前
11秒前
JamesPei应助刘文莉采纳,获得10
11秒前
weijie发布了新的文献求助10
12秒前
Jenaloe发布了新的文献求助10
13秒前
maofeng发布了新的文献求助10
13秒前
NexusExplorer应助abcc1234采纳,获得10
13秒前
小刺猬完成签到,获得积分10
13秒前
辛辛点灯完成签到 ,获得积分10
14秒前
fsky发布了新的文献求助30
14秒前
桐桐应助yyl采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582