催化作用
丙烷
化学
氧气
漫反射红外傅里叶变换
傅里叶变换红外光谱
无机化学
吸附
X射线光电子能谱
解吸
光化学
化学工程
物理化学
光催化
有机化学
工程类
作者
Wenjun Zhu,Xingbao Wang,Chuang Li,Xiao Chen,Wenying Li,Zhongmin Liu,Changhai Liang
标识
DOI:10.1016/j.jcat.2022.06.024
摘要
Developing efficient and stable catalyst is crucial for the catalytic removal of volatile organic compounds (VOCs). Herein, we report an effective and versatile surface defect engineering for regulation of surface lattice oxygen species in Co3O4 catalyst by alkaline-earth metal doping-etching strategy. The as-synthesized Ca-Co3O4-Ac exhibited remarkable catalytic activity and stability in propane oxidation, with high propane oxidation rate (5.65 × 10−7 mol g−1 s−1) and turnover frequency (TOF, 2.12 × 10−3 s−1) at 210 °C. Simultaneously, the doping-etching strategy could increase the specific surface area, low-temperature reducibility, and oxygen mobility of Co3O4 catalyst. In addition, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), density function theory (DFT) calculation, and propane temperature-programmed desorption/surface reaction (C3H8-TPD/TPSR) further revealed that active lattice oxygen species induced by doping-etching strategy promoted the propane activation on the catalyst surface. This work offers a deeper understanding of the reactive oxygen species and provides a feasible strategy for the design of efficient catalysts for practical VOCs removal.
科研通智能强力驱动
Strongly Powered by AbleSci AI