Panicle Ratio Network: streamlining rice panicle measurement by deep learning with ultra-high-definition aerial images in the field

分蘖(植物学) 均方误差 作物 农学 水田 水稻 数学 深度学习 人工智能 统计
作者
Ziyue Guo,Chenghai Yang,Wangnen Yang,Guoxing Chen,Zhao Jiang,Botao Wang,Jian Zhang
出处
期刊:Journal of Experimental Botany [Oxford University Press]
卷期号:73 (19): 6575-6588 被引量:2
标识
DOI:10.1093/jxb/erac294
摘要

The heading date and effective tiller percentage are important traits in rice, and they directly affect plant architecture and yield. Both traits are related to the ratio of the panicle number to the maximum tiller number, referred to as the panicle ratio (PR). In this study, an automatic PR estimation model (PRNet) based on a deep convolutional neural network was developed. Ultra-high-definition unmanned aerial vehicle (UAV) images were collected from cultivated rice varieties planted in 2384 experimental plots in 2019 and 2020 and in a large field in 2021. The determination coefficient between estimated PR and ground-measured PR reached 0.935, and the root mean square error values for the estimations of the heading date and effective tiller percentage were 0.687 d and 4.84%, respectively. Based on the analysis of the results, various factors affecting PR estimation and strategies for improving PR estimation accuracy were investigated. The satisfactory results obtained in this study demonstrate the feasibility of using UAVs and deep learning techniques to replace ground-based manual methods to accurately extract phenotypic information of crop micro targets (such as grains per panicle, panicle flowering, etc.) for rice and potentially for other cereal crops in future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助哈哈采纳,获得10
刚刚
mmyhn应助哈哈采纳,获得10
刚刚
丘比特应助哈哈采纳,获得10
刚刚
负责的团子完成签到,获得积分20
刚刚
xiaoyaoxiao99完成签到,获得积分10
1秒前
甜美雁菡完成签到,获得积分10
1秒前
sophieCCM0302完成签到,获得积分10
1秒前
1秒前
萧水白应助追寻的邴采纳,获得10
1秒前
JamesPei应助xiaowu采纳,获得10
3秒前
4秒前
爆米花应助炒栗子采纳,获得10
5秒前
5秒前
dong发布了新的文献求助10
5秒前
生姜发布了新的文献求助10
5秒前
乐乐应助12345采纳,获得10
6秒前
小远儿发布了新的文献求助10
6秒前
Kelly发布了新的文献求助10
8秒前
南北发布了新的文献求助10
8秒前
伶俐的代灵完成签到,获得积分10
9秒前
充电宝应助可靠尔竹采纳,获得10
10秒前
漫步云端发布了新的文献求助10
10秒前
10秒前
bkagyin应助小碗面采纳,获得10
10秒前
烟花应助负责的团子采纳,获得10
12秒前
赘婿应助称心的乘云采纳,获得10
12秒前
dong完成签到,获得积分10
13秒前
所所应助ShmilySherry采纳,获得10
16秒前
千百度发布了新的文献求助10
16秒前
111111发布了新的文献求助10
17秒前
18秒前
wxnice完成签到,获得积分10
19秒前
漫步云端完成签到,获得积分10
19秒前
传奇3应助123321采纳,获得10
19秒前
21秒前
mky完成签到,获得积分10
22秒前
success2024完成签到,获得积分10
22秒前
12345完成签到,获得积分20
22秒前
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140765
求助须知:如何正确求助?哪些是违规求助? 2791647
关于积分的说明 7799859
捐赠科研通 2447961
什么是DOI,文献DOI怎么找? 1302261
科研通“疑难数据库(出版商)”最低求助积分说明 626487
版权声明 601194