肉桂醛
肉桂
化学
色谱法
气相色谱-质谱法
卡西亚
代谢组学
代谢组
香豆素
桂皮
代谢物
质谱法
精油
生物化学
有机化学
中医药
替代医学
催化作用
病理
医学
作者
Mohamed A. Farag,Sally E. Khaled,Zeina El Gingeehy,Samir Shamma,Ahmed Zayed
出处
期刊:Metabolites
[MDPI AG]
日期:2022-07-01
卷期号:12 (7): 614-614
被引量:23
标识
DOI:10.3390/metabo12070614
摘要
Various species of cinnamon (Cinnamomum sp.) are consumed as traditional medicine and popular spice worldwide. The current research aimed to provide the first comparative metabolomics study in nine cinnamon drugs and their different commercial preparations based on three analytical platforms, i.e., solid-phase microextraction coupled to gas chromatography-mass spectrometry method (SPME/GC-MS), nuclear magnetic resonance (NMR), and ultraviolet-visible spectrophotometry (UV/Vis) targeting its metabolome. SPME/GC-MS of cinnamon aroma compounds showed a total of 126 peaks, where (E)-cinnamaldehyde was the major volatile detected at 4.2-60.9% and 6.3-64.5% in authenticated and commercial preparations, respectively. Asides, modeling of the GC/MS dataset could relate the commercial products CP-1 and CP-3 to C. cassia attributed to their higher coumarin and low (E)-cinnamaldehyde content. In contrast, NMR fingerprinting identified (E)-methoxy cinnamaldehyde and coumarin as alternative markers for C. verum and C. iners, respectively. Additionally, quantitative NMR (qNMR) standardized cinnamon extracts based on major metabolites. UV/Vis showed to be of low discrimination power, but its orthogonal projections to latent structures discriminant analysis (OPLS-DA) S-plot showed that C. iners was more abundant in cinnamic acid compared to other samples. Results of this study provide potential insights into cinnamon drugs QC analysis and identify alternative markers for their discrimination.
科研通智能强力驱动
Strongly Powered by AbleSci AI