Optimization of active surveillance strategies for heterogeneous patients with prostate cancer

计算机科学 前列腺癌 集合(抽象数据类型) 机器学习 人工智能 医学 癌症 内科学 程序设计语言
作者
Zheng Zhang,Brian T. Denton,Todd M. Morgan
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (11): 4021-4037 被引量:3
标识
DOI:10.1111/poms.13800
摘要

Prostate cancer (PCa) is common in American men with long latent periods, during which the disease is asymptomatic. Active surveillance is a monitoring strategy commonly used for patients diagnosed with low‐risk PCa who may harbor latent high‐risk PCa. The optimal monitoring strategy attempts to minimize the disutility of testing while ensuring that the patient is detected at the earliest time when the disease progresses. Unfortunately, guidelines for the active surveillance of PCa are often one‐size‐fits‐all strategies that ignore the heterogeneity among multiple patient types. In contrast, personalized strategies based on partially observable Markov decision process (POMDP) models are challenging to implement in practice given the large number of possible strategies that can be used. This article presents a two‐stage stochastic programming approach that selects a set of strategies for predefined cardinality based on patients' disease risks. The first‐stage decision variables include binary variables for the selection of periods at which to test patients in each strategy and the assignment of multiple patient types to strategies. The objective is to maximize a weighted reward function that considers the need for cancer detection, missed detection, and cost of monitoring patients. We discuss the structure and complexity of the model and reformulate a logic‐based Bender's decomposition formulation that can solve realistic instances to optimality. We present a case study for the active surveillance of PCa and show that our model results in strategies that vary in intensity according to patient disease risk. Finally, we show that our model can generate a small number of strategies that can significantly improve the existing “one‐size‐fits‐all” guideline strategies used in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
医路前行完成签到 ,获得积分10
1秒前
单薄沐夏完成签到 ,获得积分10
5秒前
如意竺完成签到,获得积分10
6秒前
小白兔完成签到 ,获得积分10
7秒前
11秒前
d22110652发布了新的文献求助10
17秒前
19秒前
shuangfeng1853完成签到 ,获得积分10
23秒前
燕晓啸完成签到 ,获得积分0
24秒前
三脸茫然完成签到 ,获得积分10
30秒前
Tuniverse_完成签到 ,获得积分10
31秒前
34秒前
334niubi666完成签到 ,获得积分10
37秒前
d22110652发布了新的文献求助10
40秒前
bin0920完成签到,获得积分10
51秒前
yangdayang完成签到 ,获得积分10
53秒前
丹妮完成签到 ,获得积分10
53秒前
zhangjianzeng完成签到 ,获得积分10
58秒前
59秒前
Hello应助Feng采纳,获得10
1分钟前
熊雅完成签到,获得积分10
1分钟前
李大宝完成签到 ,获得积分10
1分钟前
木南大宝完成签到 ,获得积分10
1分钟前
个性仙人掌完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
如泣草芥完成签到,获得积分10
1分钟前
scl完成签到 ,获得积分10
1分钟前
xwl9955完成签到 ,获得积分10
1分钟前
文艺的青旋完成签到 ,获得积分10
1分钟前
饱满若灵完成签到,获得积分10
1分钟前
dreamode应助孔wj采纳,获得10
1分钟前
1分钟前
百丈楼阁情悫悫完成签到 ,获得积分10
2分钟前
科研狗完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
GMY发布了新的文献求助10
2分钟前
喵了个咪完成签到 ,获得积分10
2分钟前
xiaoyi发布了新的文献求助10
2分钟前
GMY完成签到,获得积分20
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466840
求助须知:如何正确求助?哪些是违规求助? 3059674
关于积分的说明 9067384
捐赠科研通 2750158
什么是DOI,文献DOI怎么找? 1509066
科研通“疑难数据库(出版商)”最低求助积分说明 697126
邀请新用户注册赠送积分活动 696913