Spectral-coherence guided variational mode extraction and its application in rolling bearing fault diagnosis

峰度 计算机科学 窄带 能量(信号处理) 算法 连贯性(哲学赌博策略) 断层(地质) 人工智能 模式识别(心理学) 数学 统计 电信 地质学 地震学
作者
Zhenduo Sun,Heng Zhang,Bin Pang,Dandan Su,Zhenli Xu,Feng Sun
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (11): 115102-115102 被引量:7
标识
DOI:10.1088/1361-6501/ac7dde
摘要

Abstract Variational mode extraction (VME), inspired by variational mode decomposition (VMD), is a novel fault diagnosis technique that can efficiently extract narrowband modes from multi-component signals. Compared with VMD, VME is more accurate and faster when extracting the narrowband component. However, the preset center frequency ω c and balance factor α seriously affect the performance of VME. Therefore, spectral-coherence guided VME (SCVME), capable of determining the hyper-parameters automatically, is proposed for fault diagnosis of rolling bearings. First, by considering the advantages of spectral coherence (SCoh) for characterizing the cyclostationarity of bearing faults, its energy spectrum is constructed. The energy spectrum of SCoh can intuitively reveal the fault information energy hidden in each frequency, which provides sufficient support for the determination of the center frequency ω c . Subsequently, a novel signal evaluation index named cyclic pulse intensity (CPI) is proposed to adaptively optimize the balance factor α . It is verified that the proposed CPI index is superior to common metrics, such as kurtosis, spectral kurtosis and l 2 / l 1 norm, used for identifying periodic pulses. Finally, the modes containing fault information are accurately extracted by VME according to the optimal parameters (ω c , α ). The effectiveness of the proposed method is demonstrated by simulations and experiments. In addition, comparisons with the VMD and Autogram methods are carried out to highlight the superiority of the SCVME method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研发布了新的文献求助10
2秒前
77完成签到 ,获得积分10
2秒前
骤雨红尘发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
水枝发布了新的文献求助10
4秒前
彭于晏应助优秀小霜采纳,获得10
5秒前
CodeCraft应助1234采纳,获得10
6秒前
JINYUBAO发布了新的文献求助10
6秒前
Vincent完成签到,获得积分10
8秒前
8秒前
8秒前
Tomyyh完成签到,获得积分10
8秒前
千与千夜完成签到,获得积分10
10秒前
骤雨红尘完成签到,获得积分10
10秒前
英俊汽车完成签到,获得积分10
10秒前
li8888lili8888完成签到 ,获得积分10
10秒前
LL发布了新的文献求助10
13秒前
姚静怡发布了新的文献求助10
13秒前
bobo完成签到,获得积分10
13秒前
焦爽发布了新的文献求助10
14秒前
Wei完成签到 ,获得积分10
14秒前
白羽发布了新的文献求助10
14秒前
汉堡包应助gaodadeni采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
雨濛关注了科研通微信公众号
16秒前
浮游应助科研采纳,获得10
17秒前
18秒前
爆米花应助daytek采纳,获得10
18秒前
19秒前
上官若男应助温暖幻桃采纳,获得10
19秒前
20秒前
21秒前
威武皮带完成签到,获得积分10
22秒前
煎饼果子完成签到 ,获得积分10
22秒前
曹梓聪完成签到,获得积分10
22秒前
gaodadeni完成签到,获得积分10
22秒前
GHX_1195979443完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069424
求助须知:如何正确求助?哪些是违规求助? 4290685
关于积分的说明 13368587
捐赠科研通 4110923
什么是DOI,文献DOI怎么找? 2251090
邀请新用户注册赠送积分活动 1256336
关于科研通互助平台的介绍 1188867