Spectral-coherence guided variational mode extraction and its application in rolling bearing fault diagnosis

峰度 计算机科学 窄带 能量(信号处理) 算法 连贯性(哲学赌博策略) 断层(地质) 人工智能 模式识别(心理学) 数学 统计 电信 地质学 地震学
作者
Zhenduo Sun,Heng Zhang,Bin Pang,Dandan Su,Zhenli Xu,Feng Sun
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (11): 115102-115102 被引量:5
标识
DOI:10.1088/1361-6501/ac7dde
摘要

Abstract Variational mode extraction (VME), inspired by variational mode decomposition (VMD), is a novel fault diagnosis technique that can efficiently extract narrowband modes from multi-component signals. Compared with VMD, VME is more accurate and faster when extracting the narrowband component. However, the preset center frequency ω c and balance factor α seriously affect the performance of VME. Therefore, spectral-coherence guided VME (SCVME), capable of determining the hyper-parameters automatically, is proposed for fault diagnosis of rolling bearings. First, by considering the advantages of spectral coherence (SCoh) for characterizing the cyclostationarity of bearing faults, its energy spectrum is constructed. The energy spectrum of SCoh can intuitively reveal the fault information energy hidden in each frequency, which provides sufficient support for the determination of the center frequency ω c . Subsequently, a novel signal evaluation index named cyclic pulse intensity (CPI) is proposed to adaptively optimize the balance factor α . It is verified that the proposed CPI index is superior to common metrics, such as kurtosis, spectral kurtosis and l 2 / l 1 norm, used for identifying periodic pulses. Finally, the modes containing fault information are accurately extracted by VME according to the optimal parameters (ω c , α ). The effectiveness of the proposed method is demonstrated by simulations and experiments. In addition, comparisons with the VMD and Autogram methods are carried out to highlight the superiority of the SCVME method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
打打应助无情的白桃采纳,获得10
1秒前
香蕉觅云应助与光同晨采纳,获得10
2秒前
2秒前
小蘑菇应助clm采纳,获得10
2秒前
yhnsag完成签到,获得积分10
2秒前
Lin完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
4秒前
Rain发布了新的文献求助10
4秒前
butiflow完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
务实的唇膏完成签到,获得积分10
5秒前
Will完成签到,获得积分10
5秒前
5秒前
Micky完成签到,获得积分10
5秒前
ape发布了新的文献求助10
5秒前
十七发布了新的文献求助10
6秒前
gyt发布了新的文献求助10
6秒前
时尚战斗机完成签到,获得积分10
6秒前
6秒前
华安发布了新的文献求助30
7秒前
7秒前
迟大猫应助dpp采纳,获得10
7秒前
8秒前
astral完成签到,获得积分10
8秒前
科研通AI5应助HJJHJH采纳,获得30
9秒前
Isabel发布了新的文献求助10
9秒前
9秒前
桑姊发布了新的文献求助10
10秒前
10秒前
Cyrus2022完成签到,获得积分10
10秒前
古哉完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762