Information-decision searching algorithm: Theory and applications for solving engineering optimization problems

元启发式 计算机科学 数学优化 最优化问题 工程优化 维数之咒 稳健性(进化) 可扩展性 多目标优化 人工智能 算法 机器学习 数学 生物化学 化学 数据库 基因
作者
Kaiguang Wang,Min Guo,Cai Dai,Zhiqiang Li
出处
期刊:Information Sciences [Elsevier]
卷期号:607: 1465-1531 被引量:36
标识
DOI:10.1016/j.ins.2022.06.008
摘要

The nature of the real-world problem is multi-modal and multidimensional. This paper proposes a novel metaheuristic algorithm based on social behaviors of people acquiring favorable information, which is the society-based metaheuristic optimization mechanism, called the Information-Decision Search Algorithm (IDSE), aiming to provide a new optimization technology for solving real-world optimization problems. This optimization technology proposes special searching mechanisms of delivery behavior, approaching behavior, inheritance behavior, mutation behavior, interaction, and learning behavior, establishing corresponding mathematical models to develop an efficient optimization framework for solving constrained optimization. The performance of the proposed algorithm and 10 state-of-the-art optimizers is evaluated on 46 benchmarks, including convergence, solution accuracy, robustness, diversity, significance, and the dimensional-scalability on CEC 2017 benchmarks (50 Dim and 100 Dim). The statistical results suggest, with the dimensionality of the problem variable increasing, the computing efficiency of the proposed optimization technology keeps on the highest level at all times. The low-rank feature for IDSE on 46 benchmarks emphasizes the selective priority in solving the same optimization problem. In addition, IDSE also considers 7 real-world engineering problems. The comparison results suggest that IDSE is superior to competitive algorithms in improving solution accuracy and reducing optimization costs, indicating the significant performance for solving constraint optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓静完成签到 ,获得积分10
刚刚
SABUBU发布了新的文献求助10
1秒前
Wang0102完成签到,获得积分10
1秒前
YaoHui完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
MAY完成签到,获得积分10
4秒前
穿林打夜完成签到,获得积分10
4秒前
甜甜的文轩完成签到,获得积分10
5秒前
ling完成签到,获得积分20
5秒前
5秒前
5秒前
6秒前
6秒前
酷波er应助hh采纳,获得10
6秒前
benhuen完成签到,获得积分10
7秒前
小白发布了新的文献求助10
7秒前
小马甲应助28316818@qq.com采纳,获得10
7秒前
8秒前
炙热萝完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
乐子人完成签到,获得积分10
11秒前
inni完成签到,获得积分10
12秒前
情怀应助MAY采纳,获得10
12秒前
邹雄辉发布了新的文献求助10
12秒前
科研通AI6应助年轻迪奥采纳,获得10
13秒前
小杭76发布了新的文献求助10
13秒前
14秒前
14秒前
哲000发布了新的文献求助10
14秒前
ChenkLuo发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693319
求助须知:如何正确求助?哪些是违规求助? 5092294
关于积分的说明 15211264
捐赠科研通 4850295
什么是DOI,文献DOI怎么找? 2601689
邀请新用户注册赠送积分活动 1553480
关于科研通互助平台的介绍 1511450