Information-decision searching algorithm: Theory and applications for solving engineering optimization problems

元启发式 计算机科学 数学优化 最优化问题 工程优化 维数之咒 稳健性(进化) 可扩展性 多目标优化 人工智能 算法 机器学习 数学 生物化学 化学 数据库 基因
作者
Kaiguang Wang,Min Guo,Cai Dai,Zhiqiang Li
出处
期刊:Information Sciences [Elsevier BV]
卷期号:607: 1465-1531 被引量:27
标识
DOI:10.1016/j.ins.2022.06.008
摘要

The nature of the real-world problem is multi-modal and multidimensional. This paper proposes a novel metaheuristic algorithm based on social behaviors of people acquiring favorable information, which is the society-based metaheuristic optimization mechanism, called the Information-Decision Search Algorithm (IDSE), aiming to provide a new optimization technology for solving real-world optimization problems. This optimization technology proposes special searching mechanisms of delivery behavior, approaching behavior, inheritance behavior, mutation behavior, interaction, and learning behavior, establishing corresponding mathematical models to develop an efficient optimization framework for solving constrained optimization. The performance of the proposed algorithm and 10 state-of-the-art optimizers is evaluated on 46 benchmarks, including convergence, solution accuracy, robustness, diversity, significance, and the dimensional-scalability on CEC 2017 benchmarks (50 Dim and 100 Dim). The statistical results suggest, with the dimensionality of the problem variable increasing, the computing efficiency of the proposed optimization technology keeps on the highest level at all times. The low-rank feature for IDSE on 46 benchmarks emphasizes the selective priority in solving the same optimization problem. In addition, IDSE also considers 7 real-world engineering problems. The comparison results suggest that IDSE is superior to competitive algorithms in improving solution accuracy and reducing optimization costs, indicating the significant performance for solving constraint optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智念芹发布了新的文献求助10
1秒前
letter完成签到,获得积分10
2秒前
2秒前
啊猹发布了新的文献求助10
2秒前
搜集达人应助李灏江采纳,获得10
7秒前
wanci应助阔达的盼海采纳,获得10
7秒前
爱笑的访梦完成签到,获得积分10
8秒前
donal完成签到,获得积分10
8秒前
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
10秒前
Ricey应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
Lc应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
10秒前
木木木木完成签到,获得积分10
10秒前
Akim应助科研通管家采纳,获得20
10秒前
Angenstern完成签到 ,获得积分10
10秒前
林临林应助科研通管家采纳,获得30
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
bkagyin应助honglingjing采纳,获得10
12秒前
希望天下0贩的0应助donal采纳,获得10
13秒前
CipherSage应助玖颜采纳,获得10
14秒前
15秒前
共享精神应助机智念芹采纳,获得10
15秒前
管歌发布了新的文献求助10
15秒前
啊猹完成签到,获得积分10
16秒前
秀丽莛发布了新的文献求助10
16秒前
干净的小蘑菇完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993660
求助须知:如何正确求助?哪些是违规求助? 3534375
关于积分的说明 11265355
捐赠科研通 3274133
什么是DOI,文献DOI怎么找? 1806307
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712