Knowing When to Pass: The Effect of AI Reliability in Risky Decision Contexts

可靠性(半导体) 任务(项目管理) 动作(物理) 匹配(统计) 顺从(心理学) 毒物控制 心理学 计算机科学 应用心理学 社会心理学 工程类 统计 医学 数学 环境卫生 功率(物理) 物理 系统工程 量子力学
作者
H. W. Elder,Casey Canfield,Daniel B. Shank,Tobias Rieger,Casey Hines
出处
期刊:Human Factors [SAGE]
卷期号:66 (2): 348-362 被引量:7
标识
DOI:10.1177/00187208221100691
摘要

Objective This study manipulates the presence and reliability of AI recommendations for risky decisions to measure the effect on task performance, behavioral consequences of trust, and deviation from a probability matching collaborative decision-making model. Background Although AI decision support improves performance, people tend to underutilize AI recommendations, particularly when outcomes are uncertain. As AI reliability increases, task performance improves, largely due to higher rates of compliance (following action recommendations) and reliance (following no-action recommendations). Methods In a between-subject design, participants were assigned to a high reliability AI, low reliability AI, or a control condition. Participants decided whether to bet that their team would win in a series of basketball games tying compensation to performance. We evaluated task performance (in accuracy and signal detection terms) and the behavioral consequences of trust (via compliance and reliance). Results AI recommendations improved task performance, had limited impact on risk-taking behavior, and were under-valued by participants. Accuracy, sensitivity ( d’), and reliance increased in the high reliability AI condition, but there was no effect on response bias ( c) or compliance. Participant behavior was only consistent with a probability matching model for compliance in the low reliability condition. Conclusion In a pay-off structure that incentivized risk-taking, the primary value of the AI recommendations was in determining when to perform no action (i.e., pass on bets). Application In risky contexts, designers need to consider whether action or no-action recommendations will be more influential to design appropriate interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
公司VV发布了新的文献求助10
1秒前
爱听歌新烟完成签到,获得积分10
2秒前
2秒前
txxxx完成签到,获得积分10
3秒前
apathetic完成签到,获得积分10
4秒前
4秒前
愉快如冬发布了新的文献求助10
5秒前
5秒前
ding应助赵雪杰采纳,获得10
5秒前
7秒前
8秒前
大胆冰旋关注了科研通微信公众号
9秒前
Greeking发布了新的文献求助10
10秒前
李健的粉丝团团长应助berg采纳,获得10
12秒前
雪山飞龙发布了新的文献求助10
12秒前
乏善可陈发布了新的文献求助10
12秒前
15秒前
16秒前
言苒完成签到,获得积分10
16秒前
wysxhdy发布了新的文献求助10
16秒前
18秒前
19秒前
22秒前
22秒前
成熟稳重痴情完成签到,获得积分10
22秒前
wu完成签到,获得积分10
23秒前
会飞的猪发布了新的文献求助10
24秒前
24秒前
26秒前
Lucas应助joker采纳,获得10
26秒前
好困应助乐乐采纳,获得10
28秒前
28秒前
29秒前
彭于晏应助AAAAAA采纳,获得10
30秒前
bjbmtxy完成签到,获得积分10
30秒前
Akim应助布林布林2280采纳,获得10
30秒前
30秒前
31秒前
清脆的丹南完成签到,获得积分10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145276
求助须知:如何正确求助?哪些是违规求助? 2796719
关于积分的说明 7820904
捐赠科研通 2452997
什么是DOI,文献DOI怎么找? 1305336
科研通“疑难数据库(出版商)”最低求助积分说明 627483
版权声明 601464