A Review on Deep Learning Classifier for Hyperspectral Imaging

高光谱成像 人工智能 计算机科学 分类器(UML) 机器学习 深度学习 分类 多光谱图像 上下文图像分类 成像光谱仪 模式识别(心理学) 图像(数学) 分光计 量子力学 物理
作者
Neelam Dahiya,Sartajvir Singh,Sheifali Gupta
出处
期刊:International Journal of Image and Graphics [World Scientific]
卷期号:23 (04) 被引量:9
标识
DOI:10.1142/s0219467823500365
摘要

Nowadays, hyperspectral imaging (HSI) attracts the interest of many researchers in solving the remote sensing problems especially in various specific domains such as agriculture, snow/ice, object detection and environmental monitoring. In the previous literature, various attempts have been made to extract the critical information through hyperspectral imaging which is not possible through multispectral imaging (MSI). The classification in image processing is one of the important steps to categorize and label the pixels based on some specific rules. There are various supervised and unsupervised approaches which can be used for classification. Since the past decades, various classifiers have been developed and improved to meet the requirement of remote sensing researchers. However, each method has its own merits and demerits and is not applicable in all scenarios. Past literature also concluded that deep learning classifiers are more preferable as compared to machine learning classifiers due to various advantages such as lesser training time for model generation, handle complex data and lesser user intervention requirements. This paper aims to perform the review on various machine learning and deep learning-based classifiers for HSI classification along with challenges and remedial solution of deep learning with hyperspectral imaging. This work also highlights the various limitations of the classifiers which can be resolved with developments and incorporation of well-defined techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助wankai采纳,获得10
刚刚
努力的土豆泥关注了科研通微信公众号
1秒前
1秒前
霸气馒头完成签到 ,获得积分10
1秒前
思源应助粗心的智慧采纳,获得10
2秒前
2秒前
3秒前
wwww完成签到,获得积分10
3秒前
4秒前
4秒前
yaoyaoyao完成签到,获得积分10
5秒前
6秒前
6秒前
orixero应助everglow采纳,获得10
6秒前
万雨斌发布了新的文献求助10
6秒前
活泼的凡霜完成签到,获得积分10
7秒前
柯亦云发布了新的文献求助10
7秒前
英姑应助拓跋太英采纳,获得10
7秒前
科研牛马丫应助方半仙采纳,获得10
8秒前
9秒前
Archer发布了新的文献求助10
10秒前
10秒前
12秒前
WuYujie发布了新的文献求助20
12秒前
yaoyaoyao发布了新的文献求助10
12秒前
12秒前
13秒前
余凌兰完成签到 ,获得积分10
13秒前
Jasper应助柯亦云采纳,获得10
14秒前
15秒前
林守心关注了科研通微信公众号
15秒前
16秒前
16秒前
一笑倾城发布了新的文献求助10
16秒前
nsc发布了新的文献求助10
17秒前
专注念芹发布了新的文献求助10
18秒前
面面发布了新的文献求助10
18秒前
情怀应助柏特瑞采纳,获得10
18秒前
zly发布了新的文献求助10
19秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443733
求助须知:如何正确求助?哪些是违规求助? 3039898
关于积分的说明 8978605
捐赠科研通 2728387
什么是DOI,文献DOI怎么找? 1496507
科研通“疑难数据库(出版商)”最低求助积分说明 691668
邀请新用户注册赠送积分活动 689213