BEAR-H: An Intelligent Bilateral Exoskeletal Assistive Robot for Smart Rehabilitation

机器人 计算机科学 康复 人机交互 医疗机器人 物理医学与康复 人工智能 工程类 医学 物理疗法
作者
Xiang Li,Xuan Zhang,Xiu Li,Jianjun Long,Jianan Li,Lanshuai Xu,Gong Chen,Jing Ye
出处
期刊:IEEE Robotics & Automation Magazine [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 34-46 被引量:6
标识
DOI:10.1109/mra.2021.3129451
摘要

One typical application of a robotic exoskeleton is to automate rehabilitation, where the robot is worn by a stroke patient and provides assistance to help perform repetitive motions and regain motor functions. The deployment of exoskeletons can alleviate the shortage of experienced therapists and would also play a vital role in countries with aging populations. However, the intelligence level of existing exoskeletons is relatively low, wherein a robot cannot adapt to either the online change of a subject's motion (e.g., the gait pattern) or the variation of his/her body parameters (i.e., a new subject who is going to wear the robot), potentially resulting in conflict between human and robot and possibly even leading to physical damage. As such, the application of a robotic exoskeleton in clinical studies is limited. This article introduces a new bilateral exoskeletal assistive robot for rehabilitation (BEAR-H) in which the main novelty is the integration of multiple intelligent features, such as gait recognition and synchronization, cloud-computing diagnosis, and individualized gait generation. Such an integration helps the robot to better understand the patient's condition and hence provide effective assistance, by the end achieving smart rehabilitation. BEAR-H is a successfully commercialized product, and its performance has been validated in actual clinical studies with 30 patients, producing experimental results from different aspects that are analyzed and presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
旭日发布了新的文献求助10
1秒前
Ajax发布了新的文献求助30
1秒前
1秒前
背后的鹤轩完成签到,获得积分10
2秒前
多情的续发布了新的文献求助10
3秒前
iiiau发布了新的文献求助10
4秒前
5秒前
liubaogang完成签到,获得积分20
6秒前
6秒前
6秒前
6秒前
牙牙发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
脑洞疼应助li采纳,获得10
9秒前
田様应助索多倍采纳,获得10
9秒前
LHS发布了新的文献求助10
10秒前
10秒前
坚定新瑶发布了新的文献求助10
11秒前
changli发布了新的文献求助10
11秒前
关清明完成签到,获得积分10
11秒前
13秒前
满意水瑶完成签到,获得积分10
14秒前
完美世界应助ahmin采纳,获得10
14秒前
Akim应助小章鱼采纳,获得10
14秒前
李爱国应助平淡采纳,获得10
15秒前
大方冬寒完成签到,获得积分10
15秒前
CodeCraft应助托丽莲睡拿采纳,获得10
16秒前
Windfall完成签到,获得积分10
16秒前
卓卓完成签到,获得积分10
16秒前
英姑应助一只榴莲采纳,获得10
16秒前
Y.完成签到,获得积分10
17秒前
17秒前
19秒前
lalala发布了新的文献求助10
19秒前
19秒前
星威应助小马哥采纳,获得10
20秒前
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476842
求助须知:如何正确求助?哪些是违规求助? 3068424
关于积分的说明 9107761
捐赠科研通 2759834
什么是DOI,文献DOI怎么找? 1514308
邀请新用户注册赠送积分活动 700220
科研通“疑难数据库(出版商)”最低求助积分说明 699399