Deep learning-enabled assessment of cardiac allograft rejection from endomyocardial biopsies

医学 心肌内膜活检 接收机工作特性 活检 心脏移植 亚型 曲线下面积 曲线下面积 移植 病理 内科学 放射科 计算机科学 药代动力学 程序设计语言
作者
Jana Lipková,Tiffany Chen,Ming Lu,Richard J. Chen,Maha Shady,Mane Williams,Jingwen Wang,Zahra Noor,Richard N. Mitchell,Mehmet Turan,Gulfize Coskun,Funda Yılmaz,Derya Demir,Denız Nart,Kayhan Başak,Nesrin Turhan,Selvinaz Özkara,Yara Banz,Katja E. Odening,Faisal Mahmood
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:28 (3): 575-582 被引量:62
标识
DOI:10.1038/s41591-022-01709-2
摘要

Endomyocardial biopsy (EMB) screening represents the standard of care for detecting allograft rejections after heart transplant. Manual interpretation of EMBs is affected by substantial interobserver and intraobserver variability, which often leads to inappropriate treatment with immunosuppressive drugs, unnecessary follow-up biopsies and poor transplant outcomes. Here we present a deep learning-based artificial intelligence (AI) system for automated assessment of gigapixel whole-slide images obtained from EMBs, which simultaneously addresses detection, subtyping and grading of allograft rejection. To assess model performance, we curated a large dataset from the United States, as well as independent test cohorts from Turkey and Switzerland, which includes large-scale variability across populations, sample preparations and slide scanning instrumentation. The model detects allograft rejection with an area under the receiver operating characteristic curve (AUC) of 0.962; assesses the cellular and antibody-mediated rejection type with AUCs of 0.958 and 0.874, respectively; detects Quilty B lesions, benign mimics of rejection, with an AUC of 0.939; and differentiates between low-grade and high-grade rejections with an AUC of 0.833. In a human reader study, the AI system showed non-inferior performance to conventional assessment and reduced interobserver variability and assessment time. This robust evaluation of cardiac allograft rejection paves the way for clinical trials to establish the efficacy of AI-assisted EMB assessment and its potential for improving heart transplant outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助li采纳,获得10
2秒前
orixero应助科yt采纳,获得10
2秒前
TTT关闭了TTT文献求助
2秒前
3秒前
zwhy完成签到,获得积分10
3秒前
马兵发布了新的文献求助10
4秒前
小马甲应助青晨采纳,获得10
5秒前
7秒前
华仔应助zzzzz采纳,获得10
8秒前
丹妮完成签到 ,获得积分10
9秒前
迷路冰兰发布了新的文献求助10
10秒前
苗条的成仁完成签到 ,获得积分20
12秒前
完美的从波完成签到,获得积分10
12秒前
Money完成签到,获得积分10
12秒前
英姑应助YuJianQiao采纳,获得10
12秒前
糯米鸡发布了新的文献求助10
12秒前
Jasper应助庾新竹采纳,获得10
13秒前
li完成签到,获得积分10
13秒前
14秒前
一期一会完成签到,获得积分10
16秒前
迷路冰兰完成签到,获得积分10
17秒前
香蕉觅云应助liupidanqiu采纳,获得10
19秒前
SYLH应助Money采纳,获得10
20秒前
lixingl发布了新的文献求助10
20秒前
李健的小迷弟应助zjq采纳,获得30
20秒前
20秒前
21秒前
21秒前
zzzzz完成签到,获得积分10
22秒前
小西发布了新的文献求助10
22秒前
慕青应助糯米鸡采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
CipherSage应助丁真真采纳,获得10
23秒前
23秒前
失眠依珊发布了新的文献求助10
24秒前
LUK_发布了新的文献求助10
25秒前
SzyAzns发布了新的文献求助30
25秒前
钰宁完成签到,获得积分10
26秒前
26秒前
学术纣王发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505933
关于积分的说明 11126932
捐赠科研通 3237900
什么是DOI,文献DOI怎么找? 1789404
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802976