Deep learning-enabled assessment of cardiac allograft rejection from endomyocardial biopsies

医学 心肌内膜活检 接收机工作特性 活检 心脏移植 亚型 曲线下面积 曲线下面积 移植 病理 内科学 放射科 计算机科学 药代动力学 程序设计语言
作者
Jana Lipková,Tiffany Chen,Ming Lu,Richard J. Chen,Maha Shady,Mane Williams,Jingwen Wang,Zahra Noor,Richard N. Mitchell,Mehmet Turan,Gulfize Coskun,Funda Yılmaz,Derya Demir,Denız Nart,Kayhan Başak,Nesrin Turhan,Selvinaz Özkara,Yara Banz,Katja E. Odening,Faisal Mahmood
出处
期刊:Nature Medicine [Springer Nature]
卷期号:28 (3): 575-582 被引量:62
标识
DOI:10.1038/s41591-022-01709-2
摘要

Endomyocardial biopsy (EMB) screening represents the standard of care for detecting allograft rejections after heart transplant. Manual interpretation of EMBs is affected by substantial interobserver and intraobserver variability, which often leads to inappropriate treatment with immunosuppressive drugs, unnecessary follow-up biopsies and poor transplant outcomes. Here we present a deep learning-based artificial intelligence (AI) system for automated assessment of gigapixel whole-slide images obtained from EMBs, which simultaneously addresses detection, subtyping and grading of allograft rejection. To assess model performance, we curated a large dataset from the United States, as well as independent test cohorts from Turkey and Switzerland, which includes large-scale variability across populations, sample preparations and slide scanning instrumentation. The model detects allograft rejection with an area under the receiver operating characteristic curve (AUC) of 0.962; assesses the cellular and antibody-mediated rejection type with AUCs of 0.958 and 0.874, respectively; detects Quilty B lesions, benign mimics of rejection, with an AUC of 0.939; and differentiates between low-grade and high-grade rejections with an AUC of 0.833. In a human reader study, the AI system showed non-inferior performance to conventional assessment and reduced interobserver variability and assessment time. This robust evaluation of cardiac allograft rejection paves the way for clinical trials to establish the efficacy of AI-assisted EMB assessment and its potential for improving heart transplant outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助50
1秒前
小小酥被卷了完成签到,获得积分10
1秒前
迷途羔羊发布了新的文献求助10
1秒前
xixi完成签到,获得积分10
1秒前
美满夕阳完成签到,获得积分10
1秒前
Jasper应助叶白山采纳,获得10
2秒前
2秒前
啊怙纲完成签到 ,获得积分10
4秒前
HBY发布了新的文献求助10
5秒前
6秒前
ESTHERDY发布了新的文献求助10
6秒前
6秒前
1111完成签到,获得积分10
6秒前
7秒前
田様应助入变采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
vvvvvvvvvvvv111完成签到,获得积分10
9秒前
脑洞疼应助大宝君采纳,获得10
10秒前
徐籍发布了新的文献求助10
10秒前
natuer完成签到,获得积分10
11秒前
coconut完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助30
12秒前
13秒前
California完成签到 ,获得积分10
13秒前
natuer发布了新的文献求助20
14秒前
15秒前
高高烙完成签到,获得积分10
15秒前
情怀应助某人采纳,获得10
15秒前
陈航完成签到,获得积分10
16秒前
kmzzy完成签到 ,获得积分10
17秒前
17秒前
小白熊应助fu采纳,获得20
17秒前
sinlar发布了新的文献求助10
17秒前
南瓜气气完成签到,获得积分10
18秒前
Jiaox发布了新的文献求助10
19秒前
20秒前
牛牛超人完成签到,获得积分10
21秒前
杏杏发布了新的文献求助10
22秒前
传奇3应助郑泽航采纳,获得10
22秒前
潮流季关注了科研通微信公众号
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382