Revealing the oxygen Reduction/Evolution reaction activity origin of Carbon-Nitride-Related Single-Atom catalysts: Quantum chemistry in artificial intelligence

催化作用 密度泛函理论 析氧 氮化碳 氮化物 碳纤维 化学 Atom(片上系统) 材料科学 计算化学 纳米技术 物理化学 电化学 计算机科学 有机化学 复合材料 电极 光催化 图层(电子) 复合数 嵌入式系统
作者
Xuhao Wan,Wei Yu,Huan Niu,Xiting Wang,Zhaofu Zhang,Yuzheng Guo
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:440: 135946-135946 被引量:54
标识
DOI:10.1016/j.cej.2022.135946
摘要

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are two critical reactions for renewable energy applications, such as water electrolysers and fuel cells. During the last decade, single-atom catalysts (SACs) deposited on carbon nitrides have been a rising star as superior electrocatalysts for ORR and OER. However, either experiments or theoretical simulations cannot screen all the possible SACs at a high speed and low cost. Herein, with the aid of density functional theory (DFT), machine learning (ML) and cross validation scheme, the best performing ML models (root mean square error = 0.24 V/0.23 V for ORR/OER) are established and implemented to describe the underlying pattern of easily obtainable physical and chemical properties and the ORR/OER overpotentials of carbon-nitride-related SACs. The best SACs recommended by the ML models are further verified by DFT calculations to confirm the reliability and accuracy of models. Three promising oxygen electrocatalysts with higher activity than noble metals are identified including RhPc, Co-N-C, and Rh-C4N3. The electron number of d orbital of the metal active site is determined as the most effective descriptor by further model analysis. Finally, the universal mathematical expressions which can accurately predict the catalytic activity of carbon-nitride-related SACs without DFT calculations and ML process are obtained. The revolutionary DFT-ML hybrid scheme opens a new avenue of rational and low-cost design principles of desirable catalysts and even the exploration of recondite activity origin in an interdisciplinary view.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助shuanq采纳,获得10
1秒前
1秒前
3秒前
Akim应助日出东方小磊哥采纳,获得10
3秒前
3秒前
4秒前
4秒前
Yang完成签到,获得积分10
5秒前
5秒前
淡然寒松完成签到,获得积分10
5秒前
Zoro发布了新的文献求助10
6秒前
malucia应助Alpha采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
小蘑菇应助红小豆采纳,获得10
7秒前
7秒前
NexusExplorer应助nice采纳,获得10
7秒前
荧荧荧完成签到,获得积分10
7秒前
dudu完成签到,获得积分10
8秒前
8秒前
wwj完成签到,获得积分10
9秒前
9秒前
shengdong发布了新的文献求助20
10秒前
小学生发布了新的文献求助10
10秒前
10秒前
10秒前
叶子发布了新的文献求助20
10秒前
研友_VZG7GZ应助lv采纳,获得10
10秒前
老实的海瑶完成签到,获得积分20
10秒前
dddd完成签到 ,获得积分10
10秒前
10秒前
wcy完成签到 ,获得积分10
12秒前
12秒前
范书豪完成签到,获得积分10
12秒前
12秒前
12秒前
leiqin完成签到,获得积分10
13秒前
goldenfleece发布了新的文献求助10
13秒前
深情安青应助马丁采纳,获得10
14秒前
Alpha完成签到,获得积分10
14秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586279
求助须知:如何正确求助?哪些是违规求助? 4669574
关于积分的说明 14778915
捐赠科研通 4619294
什么是DOI,文献DOI怎么找? 2530818
邀请新用户注册赠送积分活动 1499652
关于科研通互助平台的介绍 1467830