Revealing the oxygen Reduction/Evolution reaction activity origin of Carbon-Nitride-Related Single-Atom catalysts: Quantum chemistry in artificial intelligence

催化作用 密度泛函理论 析氧 氮化碳 氮化物 碳纤维 化学 Atom(片上系统) 材料科学 计算化学 纳米技术 物理化学 电化学 计算机科学 有机化学 复合材料 电极 光催化 图层(电子) 复合数 嵌入式系统
作者
Xuhao Wan,Wei Yu,Huan Niu,Xiting Wang,Zhaofu Zhang,Yuzheng Guo
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:440: 135946-135946 被引量:54
标识
DOI:10.1016/j.cej.2022.135946
摘要

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are two critical reactions for renewable energy applications, such as water electrolysers and fuel cells. During the last decade, single-atom catalysts (SACs) deposited on carbon nitrides have been a rising star as superior electrocatalysts for ORR and OER. However, either experiments or theoretical simulations cannot screen all the possible SACs at a high speed and low cost. Herein, with the aid of density functional theory (DFT), machine learning (ML) and cross validation scheme, the best performing ML models (root mean square error = 0.24 V/0.23 V for ORR/OER) are established and implemented to describe the underlying pattern of easily obtainable physical and chemical properties and the ORR/OER overpotentials of carbon-nitride-related SACs. The best SACs recommended by the ML models are further verified by DFT calculations to confirm the reliability and accuracy of models. Three promising oxygen electrocatalysts with higher activity than noble metals are identified including RhPc, Co-N-C, and Rh-C4N3. The electron number of d orbital of the metal active site is determined as the most effective descriptor by further model analysis. Finally, the universal mathematical expressions which can accurately predict the catalytic activity of carbon-nitride-related SACs without DFT calculations and ML process are obtained. The revolutionary DFT-ML hybrid scheme opens a new avenue of rational and low-cost design principles of desirable catalysts and even the exploration of recondite activity origin in an interdisciplinary view.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mm发布了新的文献求助20
刚刚
hahah发布了新的文献求助10
1秒前
DavidXie应助CC采纳,获得10
2秒前
闪电发布了新的文献求助10
2秒前
花痴的手套完成签到 ,获得积分10
2秒前
tangsuyun完成签到 ,获得积分10
3秒前
沉默的书琴完成签到,获得积分10
6秒前
茗佞完成签到 ,获得积分10
7秒前
空得空的空地完成签到,获得积分10
8秒前
欣喜糖豆发布了新的文献求助10
8秒前
8秒前
黄茹薇发布了新的文献求助10
8秒前
迟早year完成签到 ,获得积分10
9秒前
暮弦完成签到,获得积分10
10秒前
Moihan完成签到,获得积分10
10秒前
zhang值完成签到,获得积分10
10秒前
兴奋奇异果完成签到,获得积分10
11秒前
北风发布了新的文献求助10
11秒前
13秒前
梦想家完成签到,获得积分10
14秒前
zhang值发布了新的文献求助10
14秒前
17秒前
18秒前
zlb发布了新的文献求助10
19秒前
qiqi完成签到,获得积分10
19秒前
jiajia完成签到 ,获得积分10
20秒前
娜娜家的大宝贝完成签到,获得积分10
20秒前
20秒前
gaons完成签到,获得积分20
21秒前
shimmy完成签到,获得积分10
22秒前
23秒前
24秒前
24秒前
开心的谷兰完成签到,获得积分10
26秒前
26秒前
Hello应助梦想家采纳,获得30
26秒前
缓慢尔槐发布了新的文献求助10
27秒前
111发布了新的文献求助10
27秒前
pluto发布了新的文献求助10
27秒前
怕黑的魂幽完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998480
求助须知:如何正确求助?哪些是违规求助? 3537993
关于积分的说明 11273002
捐赠科研通 3276991
什么是DOI,文献DOI怎么找? 1807228
邀请新用户注册赠送积分活动 883823
科研通“疑难数据库(出版商)”最低求助积分说明 810049