Revealing the oxygen Reduction/Evolution reaction activity origin of Carbon-Nitride-Related Single-Atom catalysts: Quantum chemistry in artificial intelligence

催化作用 密度泛函理论 析氧 氮化碳 氮化物 碳纤维 化学 Atom(片上系统) 材料科学 计算化学 纳米技术 物理化学 电化学 计算机科学 有机化学 复合材料 电极 光催化 图层(电子) 复合数 嵌入式系统
作者
Xuhao Wan,Wei Yu,Huan Niu,Xiting Wang,Zhaofu Zhang,Yuzheng Guo
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:440: 135946-135946 被引量:54
标识
DOI:10.1016/j.cej.2022.135946
摘要

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are two critical reactions for renewable energy applications, such as water electrolysers and fuel cells. During the last decade, single-atom catalysts (SACs) deposited on carbon nitrides have been a rising star as superior electrocatalysts for ORR and OER. However, either experiments or theoretical simulations cannot screen all the possible SACs at a high speed and low cost. Herein, with the aid of density functional theory (DFT), machine learning (ML) and cross validation scheme, the best performing ML models (root mean square error = 0.24 V/0.23 V for ORR/OER) are established and implemented to describe the underlying pattern of easily obtainable physical and chemical properties and the ORR/OER overpotentials of carbon-nitride-related SACs. The best SACs recommended by the ML models are further verified by DFT calculations to confirm the reliability and accuracy of models. Three promising oxygen electrocatalysts with higher activity than noble metals are identified including RhPc, Co-N-C, and Rh-C4N3. The electron number of d orbital of the metal active site is determined as the most effective descriptor by further model analysis. Finally, the universal mathematical expressions which can accurately predict the catalytic activity of carbon-nitride-related SACs without DFT calculations and ML process are obtained. The revolutionary DFT-ML hybrid scheme opens a new avenue of rational and low-cost design principles of desirable catalysts and even the exploration of recondite activity origin in an interdisciplinary view.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ww发布了新的文献求助10
1秒前
高兴的羊发布了新的文献求助10
2秒前
大海发布了新的文献求助10
2秒前
了了发布了新的文献求助10
3秒前
kidney发布了新的文献求助10
3秒前
小二郎应助天真千易采纳,获得10
4秒前
Lucas应助天真千易采纳,获得10
4秒前
Hello应助天真千易采纳,获得10
4秒前
小二郎应助天真千易采纳,获得10
4秒前
4秒前
搜集达人应助天真千易采纳,获得10
4秒前
万能图书馆应助天真千易采纳,获得10
4秒前
小二郎应助雪白摇伽采纳,获得10
4秒前
善学以致用应助天真千易采纳,获得10
4秒前
4秒前
脑洞疼应助天真千易采纳,获得10
4秒前
含蓄鸡翅完成签到,获得积分10
5秒前
漂亮幻然发布了新的文献求助10
5秒前
redamancy完成签到 ,获得积分10
5秒前
NULI发布了新的文献求助30
5秒前
木婉清发布了新的文献求助10
6秒前
cheire完成签到,获得积分10
6秒前
纳尼发布了新的文献求助10
6秒前
Bluebulu完成签到,获得积分10
7秒前
满意往事完成签到,获得积分10
8秒前
CodeCraft应助Morton采纳,获得100
9秒前
10秒前
Ray完成签到,获得积分10
10秒前
斯文败类应助天真千易采纳,获得10
10秒前
星辰大海应助天真千易采纳,获得10
10秒前
华仔应助天真千易采纳,获得10
10秒前
小蘑菇应助天真千易采纳,获得10
10秒前
在水一方应助天真千易采纳,获得10
10秒前
小二郎应助天真千易采纳,获得10
10秒前
领导范儿应助天真千易采纳,获得10
10秒前
科目三应助天真千易采纳,获得10
11秒前
11秒前
无花果应助天真千易采纳,获得10
11秒前
打打应助天真千易采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525236
求助须知:如何正确求助?哪些是违规求助? 4615551
关于积分的说明 14548959
捐赠科研通 4553590
什么是DOI,文献DOI怎么找? 2495405
邀请新用户注册赠送积分活动 1475947
关于科研通互助平台的介绍 1447675