Revealing the oxygen Reduction/Evolution reaction activity origin of Carbon-Nitride-Related Single-Atom catalysts: Quantum chemistry in artificial intelligence

催化作用 密度泛函理论 析氧 氮化碳 氮化物 碳纤维 化学 Atom(片上系统) 材料科学 计算化学 纳米技术 物理化学 电化学 计算机科学 有机化学 复合材料 电极 光催化 图层(电子) 复合数 嵌入式系统
作者
Xuhao Wan,Wei Yu,Huan Niu,Xiting Wang,Zhaofu Zhang,Yuzheng Guo
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:440: 135946-135946 被引量:48
标识
DOI:10.1016/j.cej.2022.135946
摘要

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are two critical reactions for renewable energy applications, such as water electrolysers and fuel cells. During the last decade, single-atom catalysts (SACs) deposited on carbon nitrides have been a rising star as superior electrocatalysts for ORR and OER. However, either experiments or theoretical simulations cannot screen all the possible SACs at a high speed and low cost. Herein, with the aid of density functional theory (DFT), machine learning (ML) and cross validation scheme, the best performing ML models (root mean square error = 0.24 V/0.23 V for ORR/OER) are established and implemented to describe the underlying pattern of easily obtainable physical and chemical properties and the ORR/OER overpotentials of carbon-nitride-related SACs. The best SACs recommended by the ML models are further verified by DFT calculations to confirm the reliability and accuracy of models. Three promising oxygen electrocatalysts with higher activity than noble metals are identified including RhPc, Co-N-C, and Rh-C4N3. The electron number of d orbital of the metal active site is determined as the most effective descriptor by further model analysis. Finally, the universal mathematical expressions which can accurately predict the catalytic activity of carbon-nitride-related SACs without DFT calculations and ML process are obtained. The revolutionary DFT-ML hybrid scheme opens a new avenue of rational and low-cost design principles of desirable catalysts and even the exploration of recondite activity origin in an interdisciplinary view.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zjf发布了新的文献求助10
1秒前
2秒前
3秒前
杨嘟嘟完成签到,获得积分10
3秒前
amino发布了新的文献求助10
4秒前
甜甜哩完成签到,获得积分10
5秒前
5秒前
Hehehe完成签到,获得积分10
5秒前
7秒前
7秒前
7秒前
蟹蟹发布了新的文献求助10
8秒前
MingJ发布了新的文献求助10
8秒前
9秒前
9秒前
慕青应助Randi采纳,获得10
9秒前
10秒前
ckk发布了新的文献求助10
10秒前
传奇3应助都是采纳,获得10
10秒前
二十二完成签到 ,获得积分10
11秒前
12秒前
12秒前
小药师发布了新的文献求助10
12秒前
ttttt发布了新的文献求助10
12秒前
彭于晏应助大小姐采纳,获得10
12秒前
ZeJ发布了新的文献求助10
13秒前
无花果应助amino采纳,获得30
13秒前
splash发布了新的文献求助10
13秒前
Lucas应助realrrr采纳,获得10
14秒前
14秒前
高万发布了新的文献求助10
14秒前
蟹蟹完成签到,获得积分10
15秒前
所所应助MingJ采纳,获得10
16秒前
16秒前
17秒前
17秒前
lulu发布了新的文献求助10
18秒前
小老板发布了新的文献求助10
19秒前
Hello应助Zjf采纳,获得10
19秒前
酷波er应助紫苏采纳,获得10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260739
求助须知:如何正确求助?哪些是违规求助? 2901859
关于积分的说明 8317799
捐赠科研通 2571583
什么是DOI,文献DOI怎么找? 1397109
科研通“疑难数据库(出版商)”最低求助积分说明 653642
邀请新用户注册赠送积分活动 632153