Revealing the oxygen Reduction/Evolution reaction activity origin of Carbon-Nitride-Related Single-Atom catalysts: Quantum chemistry in artificial intelligence

催化作用 密度泛函理论 析氧 氮化碳 氮化物 碳纤维 化学 Atom(片上系统) 材料科学 计算化学 纳米技术 物理化学 电化学 计算机科学 有机化学 复合材料 电极 光催化 图层(电子) 复合数 嵌入式系统
作者
Xuhao Wan,Wei Yu,Huan Niu,Xiting Wang,Zhaofu Zhang,Yuzheng Guo
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:440: 135946-135946 被引量:54
标识
DOI:10.1016/j.cej.2022.135946
摘要

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are two critical reactions for renewable energy applications, such as water electrolysers and fuel cells. During the last decade, single-atom catalysts (SACs) deposited on carbon nitrides have been a rising star as superior electrocatalysts for ORR and OER. However, either experiments or theoretical simulations cannot screen all the possible SACs at a high speed and low cost. Herein, with the aid of density functional theory (DFT), machine learning (ML) and cross validation scheme, the best performing ML models (root mean square error = 0.24 V/0.23 V for ORR/OER) are established and implemented to describe the underlying pattern of easily obtainable physical and chemical properties and the ORR/OER overpotentials of carbon-nitride-related SACs. The best SACs recommended by the ML models are further verified by DFT calculations to confirm the reliability and accuracy of models. Three promising oxygen electrocatalysts with higher activity than noble metals are identified including RhPc, Co-N-C, and Rh-C4N3. The electron number of d orbital of the metal active site is determined as the most effective descriptor by further model analysis. Finally, the universal mathematical expressions which can accurately predict the catalytic activity of carbon-nitride-related SACs without DFT calculations and ML process are obtained. The revolutionary DFT-ML hybrid scheme opens a new avenue of rational and low-cost design principles of desirable catalysts and even the exploration of recondite activity origin in an interdisciplinary view.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Hello应助永曼采纳,获得10
1秒前
科研汪发布了新的文献求助10
1秒前
慕青应助chenjie采纳,获得10
1秒前
XJY发布了新的文献求助20
2秒前
2秒前
2秒前
懒大王应助皮卡丘采纳,获得10
3秒前
4秒前
4秒前
Owen应助小唐采纳,获得10
4秒前
4秒前
可靠若云发布了新的文献求助10
4秒前
guo发布了新的文献求助10
5秒前
7秒前
orixero应助梧wu采纳,获得10
7秒前
lyx发布了新的文献求助10
8秒前
bkagyin应助小迪采纳,获得10
8秒前
qianqiu发布了新的文献求助10
9秒前
9秒前
9秒前
科研通AI6应助鲜艳的亿先采纳,获得30
10秒前
科研通AI6应助乔木采纳,获得10
11秒前
jazzmantan发布了新的文献求助10
11秒前
spzdss发布了新的文献求助20
11秒前
lingzi1015完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
gis_xu发布了新的文献求助10
13秒前
14秒前
15秒前
陈一完成签到 ,获得积分10
15秒前
香蕉觅云应助年华采纳,获得10
17秒前
夏侯幻梦完成签到 ,获得积分10
17秒前
科研通AI6应助李某某采纳,获得10
17秒前
汉堡包应助简单幸福采纳,获得10
19秒前
hbhbj发布了新的文献求助10
19秒前
赵坤煊发布了新的文献求助20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406795
求助须知:如何正确求助?哪些是违规求助? 4524516
关于积分的说明 14098938
捐赠科研通 4438379
什么是DOI,文献DOI怎么找? 2436217
邀请新用户注册赠送积分活动 1428245
关于科研通互助平台的介绍 1406340