Classifying brain states and pupillary responses associated with the processing of old and new information

脑电图 线性判别分析 召回 人工智能 瞳孔测量 瞳孔反应 计算机科学 模式识别(心理学) 结合属性 心理学 任务(项目管理) 语音识别 机器学习 小学生 认知心理学 神经科学 数学 管理 纯数学 经济
作者
Germán Campos-Arteaga,Andrea Araneda,Sergio Ruíz,Eugenio Rodríguez,Ranganatha Sitaram
出处
期刊:International Journal of Psychophysiology [Elsevier]
卷期号:176: 129-141 被引量:2
标识
DOI:10.1016/j.ijpsycho.2022.04.004
摘要

Memory retrieval of consolidated memories has been extensively studied using "old-new tasks", meaning tasks in which participants are instructed to discriminate between stimuli they have experienced before and new ones. Significant differences in the neural processing of old and new elements have been demonstrated using different techniques, such as electroencephalography and pupillometry. In this work, using the data from a previously published study (Campos-Arteaga, Forcato et al. 2020), we investigated whether machine learning methods can classify, based on single trials, the brain activity and pupil responses associated with the processing of old and new information. Specifically, we used the EEG and pupillary information of 39 participants who completed an associative recall old-new task in which they had to discriminate between previously seen or new pictures and, for the old ones, to recall an associated word. Our analyses corroborated the differences in neural processing of old and new items reported in previous studies. Based on these results, we hypothesized that the application of machine learning methods would allow an optimal classification of old and new conditions. Using a Windowed Means approach (WM) and two different machine learning algorithms - Logistic Regression (WM-LR) and Linear Discriminant Analysis (WM-LDA) - mean classification performances of 0.75 and 0.74 (AUC) were achieved when EEG and pupillary signals were combined to train the models, respectively. In both cases, when the EEG and pupillary data were merged, the performance was significantly better than when they were used separately. In addition, our results showed similar classification performances when fused classification models (i.e., models created with the concatenated information of 38 participants) were applied to individuals whose EEG and pupillary information was not considered for the model training. Similar results were found when alternative preprocessing methods were used. Taken together, these findings show that it is possible to classify the neurophysiological activity associated with the processing of experienced and new stimuli using machine learning techniques. Future research is needed to determine how this knowledge might have potential implications for memory research and clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小毛毛发布了新的文献求助10
1秒前
1秒前
冯豆豆要发SCI完成签到,获得积分20
1秒前
顺利毕业完成签到,获得积分10
5秒前
领导范儿应助枝枝采纳,获得10
5秒前
Jack发布了新的文献求助10
5秒前
烟花应助顾志成采纳,获得10
6秒前
莴苣发布了新的文献求助10
6秒前
风趣安青完成签到 ,获得积分10
7秒前
谦让的樱发布了新的文献求助10
8秒前
8秒前
光亮易槐完成签到,获得积分10
9秒前
9秒前
10秒前
津津完成签到,获得积分10
12秒前
小鱼鱼完成签到,获得积分10
12秒前
善学以致用应助光亮易槐采纳,获得10
14秒前
14秒前
duoduo完成签到,获得积分10
15秒前
思源应助hao采纳,获得10
15秒前
15秒前
xiaojing发布了新的文献求助10
15秒前
15秒前
15秒前
hjkl完成签到,获得积分10
17秒前
顾志成发布了新的文献求助10
18秒前
明理完成签到,获得积分10
18秒前
桐桐应助cy采纳,获得10
18秒前
19秒前
felix发布了新的文献求助30
21秒前
21秒前
hjkl发布了新的文献求助10
21秒前
通研科发布了新的文献求助10
22秒前
22秒前
榕树完成签到,获得积分10
22秒前
23秒前
24秒前
yifanchen发布了新的文献求助10
26秒前
Orange应助忧郁绝音采纳,获得10
27秒前
逆天大脚发布了新的文献求助10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461678
求助须知:如何正确求助?哪些是违规求助? 3055353
关于积分的说明 9047590
捐赠科研通 2745170
什么是DOI,文献DOI怎么找? 1506011
科研通“疑难数据库(出版商)”最低求助积分说明 695973
邀请新用户注册赠送积分活动 695380