Rapid Screening Using Pathomorphologic Interpretation to Detect BRAFV600E Mutation and Microsatellite Instability in Colorectal Cancer

微卫星不稳定性 克拉斯 结直肠癌 医学 癌症 病理 突变 放射科 内科学 肿瘤科 微卫星 基因 生物 遗传学 等位基因
作者
Satoshi Fujii,Daisuke Kotani,Masahiro Hattori,Masato Nishihara,Toshihide Shikanai,Junji Hashimoto,Yuki Hama,Takuya Nishino,Mizuto Suzuki,Ayatoshi Yoshidumi,Makoto Ueno,Yoshito Komatsu,Toshiki Masuishi,Hiroki Hara,Taito Esaki,Yoshiaki Nakamura,Hideaki Bando,Tomoyuki Yamada,Takayuki Yoshino
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:28 (12): 2623-2632 被引量:9
标识
DOI:10.1158/1078-0432.ccr-21-4391
摘要

Abstract Purpose: Rapid decision-making is essential in precision medicine for initiating molecular targeted therapy for patients with cancer. This study aimed to extract pathomorphologic features that enable the accurate prediction of genetic abnormalities in cancer from hematoxylin and eosin images using deep learning (DL). Experimental Design: A total of 1,657 images (one representative image per patient) of thin formalin-fixed, paraffin-embedded tissue sections from either primary or metastatic tumors with next-generation sequencing–confirmed genetic abnormalities—including BRAFV600E and KRAS mutations, and microsatellite instability high (MSI-H)—that are directly relevant to therapeutic strategies for advanced colorectal cancer were obtained from the nationwide SCRUM-Japan GI-SCREEN project. The images were divided into three groups of 986, 248, and 423 images to create one training and two validation cohorts, respectively. Pathomorphologic feature-prediction DL models were first developed on the basis of pathomorphologic features. Subsequently, gene-prediction DL models were constructed for all possible combinations of pathomorphologic features that enabled the prediction of gene abnormalities based on images filtered by the combination of pathomorphologic feature-prediction models. Results: High accuracies were achieved, with AUCs > 0.90 and 0.80 for 12 and 27, respectively, of 33 analyzed pathomorphologic features, with high AUCs being yielded for both BRAFV600E (0.851 and 0.859) and MSI-H (0.923 and 0.862). Conclusions: These findings show that novel next-generation pathology methods can predict genetic abnormalities without the need for standard-of-care gene tests, and this novel next-generation pathology method can be applied for colorectal cancer treatment planning in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CyrusSo524应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
1秒前
rabpig应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
YifanWang应助科研通管家采纳,获得20
1秒前
今后应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
庄默羽完成签到,获得积分10
1秒前
Darknewnew完成签到,获得积分10
1秒前
jayus完成签到,获得积分10
1秒前
青青子衿完成签到,获得积分10
2秒前
哈哈完成签到,获得积分10
2秒前
不知道完成签到,获得积分10
2秒前
xr完成签到 ,获得积分10
3秒前
大仁哥完成签到,获得积分10
4秒前
Hyc28441711完成签到,获得积分10
4秒前
...完成签到,获得积分10
4秒前
苏苏苏苏完成签到,获得积分10
5秒前
LSQ完成签到 ,获得积分10
5秒前
陈谨完成签到 ,获得积分10
6秒前
暖阳完成签到,获得积分20
6秒前
刘珍荣完成签到,获得积分10
6秒前
哇哈完成签到 ,获得积分10
7秒前
菠萝汁完成签到,获得积分10
7秒前
默默的皮牙子应助小玉米采纳,获得10
8秒前
starwan完成签到 ,获得积分10
8秒前
离线完成签到,获得积分10
8秒前
xlk2222完成签到,获得积分10
10秒前
Jasper应助qqwxp采纳,获得10
11秒前
好运藏在善良里应助GY采纳,获得20
11秒前
daguan完成签到,获得积分10
11秒前
March完成签到,获得积分10
11秒前
超帅的又槐完成签到,获得积分10
12秒前
吃猫的鱼完成签到 ,获得积分10
13秒前
jackie完成签到,获得积分10
14秒前
落寞宝马完成签到,获得积分20
14秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890