Rapid Screening Using Pathomorphologic Interpretation to Detect BRAFV600E Mutation and Microsatellite Instability in Colorectal Cancer

微卫星不稳定性 克拉斯 结直肠癌 医学 癌症 病理 突变 放射科 内科学 肿瘤科 微卫星 基因 生物 遗传学 等位基因
作者
Satoshi Fujii,Daisuke Kotani,Masahiro Hattori,Masato Nishihara,Toshihide Shikanai,Junji Hashimoto,Yuki Hama,Takuya Nishino,Mizuto Suzuki,Ayatoshi Yoshidumi,Makoto Ueno,Yoshito Komatsu,Toshiki Masuishi,Hiroki Hara,Taito Esaki,Yoshiaki Nakamura,Hideaki Bando,Tomoyuki Yamada,Takayuki Yoshino
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:28 (12): 2623-2632 被引量:9
标识
DOI:10.1158/1078-0432.ccr-21-4391
摘要

Abstract Purpose: Rapid decision-making is essential in precision medicine for initiating molecular targeted therapy for patients with cancer. This study aimed to extract pathomorphologic features that enable the accurate prediction of genetic abnormalities in cancer from hematoxylin and eosin images using deep learning (DL). Experimental Design: A total of 1,657 images (one representative image per patient) of thin formalin-fixed, paraffin-embedded tissue sections from either primary or metastatic tumors with next-generation sequencing–confirmed genetic abnormalities—including BRAFV600E and KRAS mutations, and microsatellite instability high (MSI-H)—that are directly relevant to therapeutic strategies for advanced colorectal cancer were obtained from the nationwide SCRUM-Japan GI-SCREEN project. The images were divided into three groups of 986, 248, and 423 images to create one training and two validation cohorts, respectively. Pathomorphologic feature-prediction DL models were first developed on the basis of pathomorphologic features. Subsequently, gene-prediction DL models were constructed for all possible combinations of pathomorphologic features that enabled the prediction of gene abnormalities based on images filtered by the combination of pathomorphologic feature-prediction models. Results: High accuracies were achieved, with AUCs > 0.90 and 0.80 for 12 and 27, respectively, of 33 analyzed pathomorphologic features, with high AUCs being yielded for both BRAFV600E (0.851 and 0.859) and MSI-H (0.923 and 0.862). Conclusions: These findings show that novel next-generation pathology methods can predict genetic abnormalities without the need for standard-of-care gene tests, and this novel next-generation pathology method can be applied for colorectal cancer treatment planning in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
边边玥铭完成签到,获得积分10
刚刚
yxszjw完成签到,获得积分10
刚刚
一杯月光完成签到,获得积分10
刚刚
健忘芹发布了新的文献求助10
刚刚
linshunan完成签到 ,获得积分10
1秒前
李爱国应助萤火虫采纳,获得30
1秒前
CC发布了新的文献求助10
2秒前
xier完成签到 ,获得积分10
3秒前
cdercder应助一天八杯水采纳,获得30
3秒前
边边玥铭发布了新的文献求助10
3秒前
3秒前
陆人甲发布了新的文献求助30
4秒前
11完成签到,获得积分10
5秒前
7秒前
8秒前
熊仔一百完成签到,获得积分10
9秒前
Hululu完成签到 ,获得积分10
10秒前
Sean完成签到,获得积分10
10秒前
科研通AI5应助边边玥铭采纳,获得10
11秒前
科研通AI5应助stt采纳,获得10
11秒前
脑洞疼应助健忘芹采纳,获得10
11秒前
12秒前
13秒前
太阳雨完成签到,获得积分10
13秒前
小二郎应助CC采纳,获得10
13秒前
小马甲应助娜娜liuna采纳,获得10
16秒前
李志远发布了新的文献求助10
16秒前
chenhuan发布了新的文献求助10
17秒前
17秒前
19秒前
19秒前
汉堡包应助河水弯弯采纳,获得10
19秒前
领导范儿应助河水弯弯采纳,获得10
19秒前
19秒前
21秒前
cs发布了新的文献求助10
22秒前
隐形傲霜完成签到 ,获得积分10
22秒前
So完成签到 ,获得积分10
23秒前
科研通AI5应助李女士采纳,获得10
23秒前
萤火虫发布了新的文献求助30
23秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479351
求助须知:如何正确求助?哪些是违规求助? 3070006
关于积分的说明 9116371
捐赠科研通 2761742
什么是DOI,文献DOI怎么找? 1515526
邀请新用户注册赠送积分活动 700958
科研通“疑难数据库(出版商)”最低求助积分说明 699951