In situ growth of glucose-intercalated LDHs on NiCo2S4 hollow nanospheres to enhance energy storage capacity for hybrid supercapacitors

超级电容器 层状双氢氧化物 电解质 材料科学 电化学 化学工程 电极 储能 扩散 纳米技术 复合数 氢氧化物 化学 复合材料 功率(物理) 热力学 物理 工程类 物理化学 量子力学
作者
Pengfei Li,Xueqin Liu,Muhammad Arif,Honglin Yan,Chenyao Hu,Shen‐Ming Chen,Xiaoheng Liu
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier]
卷期号:644: 128823-128823 被引量:18
标识
DOI:10.1016/j.colsurfa.2022.128823
摘要

Layer double hydroxides (LDHs) have been considered ideal material for energy storage owing to their high theoretical capacity. However, the narrow layer spacing of LDHs affects the diffusion of electrolyte ions and the exposure of active atoms. In addition, intrinsic flaws such as low conductivity and poor cycle still restrict the practical application of LDHs. It is urgent to apply modification strategies to effectively activate intrinsic energy storage performance of LDHs. In this work, we designed glucose-intercalated LDHs on the surface of NiCo2S4 hollow nanospheres by in situ growth strategy to prepare NiCo2S4 @NiCo-G-LDH materials. The glucose-intercalated LDHs showed an appropriate layer spacing of 8.9 Å, which minimized the diffusion path of electrolyte ions and accelerated the kinetics of redox reactions. Besides, the introduction of transition metal sulfides (TMSs) has effectively improved the electrical conductivity of the LDHs, thus showing excellent electrochemical performance. Examined as the supercapacitor electrode; the as-prepared NiCo2S4 @NiCo-G-LDH material possesses an ultrahigh specific capacity of 986 C g−1 at 1 A g−1 and a rate capability of 73.1% even at 30 A g−1. Furthermore, the fabricated hybrid supercapacitor device using NiCo2S4 @NiCo-G-LDH as the positive electrode and commercial activated carbon as the negative electrode achieved a competitive energy density of 54.5 Wh kg−1 at a power density of 400.0 W kg−1 and preeminent cycle stability of 88.9% over 10000 cycles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sherry发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
乐乐应助yunshui采纳,获得10
1秒前
HSY完成签到,获得积分10
1秒前
wanci应助BeautyZ采纳,获得10
2秒前
3秒前
3秒前
CodeCraft应助WeiPaiHWuFXZ采纳,获得10
3秒前
赘婿应助含蓄的大米采纳,获得10
3秒前
4秒前
4秒前
5秒前
田様应助张晓年采纳,获得10
5秒前
5秒前
一指墨完成签到,获得积分10
6秒前
爆米花应助ddd采纳,获得10
6秒前
6秒前
海纳百川完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
冬易发布了新的文献求助10
6秒前
欣喜冷卉完成签到,获得积分20
7秒前
peng完成签到,获得积分10
7秒前
8秒前
难过水杯完成签到 ,获得积分10
8秒前
cch12121发布了新的文献求助10
8秒前
星辰大海应助明天就毕业采纳,获得10
10秒前
10秒前
无极微光应助阿龙采纳,获得20
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
聪慧的金鱼完成签到,获得积分20
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
Verity应助科研通管家采纳,获得20
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
自由的沛山完成签到,获得积分10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
HOAN应助科研通管家采纳,获得30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027