Application of machine learning in predicting pitting corrosion – electrochemical data around the open circuit potential

点蚀 卷积神经网络 开路电压 计算机科学 人工神经网络 工作(物理) 电化学 腐蚀 电化学噪声 阳极 人工智能 材料科学 冶金 化学 工程类 电极 机械工程 电压 电气工程 物理化学
作者
Mohamed Nadir Boucherit,Sid Ahmed Amzert,Fahd Arbaoui
出处
期刊:Anti-corrosion Methods and Materials [Emerald Publishing Limited]
卷期号:69 (3): 295-301 被引量:2
标识
DOI:10.1108/acmm-07-2021-2516
摘要

Purpose The purpose of this study is to confirm the idea that observing the electrochemical data of a steel polarized around its open circuit potential can provide insight into its performance against pitting corrosion. To confirm this idea a two-step work was carried out. The authors collected electrochemical data through experiments and exploited them through machine learning by building neural networks capable of predicting the behaviour of the steel against the pitting corrosion. Design/methodology/approach The electrochemical experiments consist in plotting voltammograms of the steel in chemical solutions of various degrees of corrosiveness. For each experiment, the authors observe how the open-circuit potential evolves over a period of 1 min, and following this, the authors observe the current evolution when they impose a potential scan that starts from the open-circuit potential. For each of these situations, the pitting potential Epit is noted. The authors then build different artificial neural networks, which after learning, can, by receiving electrochemical data, calculate a pitting potential Epit′. The performance of the neural networks is evaluated by the correlation of Epit and Epit′. Findings Through this work, different types of networks were compared. The results show that recurrent or convolutional networks can better capture the temporal nature of the input data. Originality/value The results of this work support the idea that the measurable electrochemical data around the free potential of a material can be correlated with its behaviour at more anodic potentials, particularly the initiation of pits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小怪兽发布了新的文献求助20
刚刚
诚心小兔子完成签到,获得积分10
1秒前
2秒前
ZhiningZ完成签到 ,获得积分10
2秒前
咕噜快逃完成签到,获得积分10
2秒前
无奈凡波完成签到 ,获得积分10
2秒前
可靠的颤完成签到,获得积分10
3秒前
甜菜完成签到,获得积分10
3秒前
今后应助ily.采纳,获得10
3秒前
3秒前
852应助刘子龙采纳,获得10
3秒前
林燊完成签到,获得积分10
3秒前
BAEKHYUNLUCKY完成签到,获得积分10
4秒前
如意书包发布了新的文献求助10
4秒前
4秒前
Jasper应助12345采纳,获得30
4秒前
Anaero完成签到,获得积分10
4秒前
Summer完成签到,获得积分10
5秒前
5秒前
5秒前
留胡子的雅山完成签到,获得积分10
5秒前
852应助ddddd采纳,获得10
6秒前
flippedaaa完成签到 ,获得积分20
6秒前
秋海棠发布了新的文献求助10
6秒前
香蕉觅云应助背后的桐采纳,获得10
7秒前
Litianxue完成签到,获得积分10
7秒前
ll发布了新的文献求助10
7秒前
Lucas应助花生采纳,获得10
7秒前
积极烧鹅发布了新的文献求助20
8秒前
8秒前
11完成签到 ,获得积分10
9秒前
研友_08og68发布了新的文献求助10
9秒前
阿斯师大完成签到,获得积分10
9秒前
刘子龙完成签到,获得积分10
10秒前
科研通AI2S应助菜鸟12采纳,获得10
11秒前
务实凡灵完成签到,获得积分10
11秒前
11秒前
朱小燕发布了新的文献求助10
11秒前
Jiang发布了新的文献求助10
12秒前
汉堡包应助REN采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620