化学
污染物
腐植酸
苯酚
废水
无机化学
铜
环境化学
核化学
有机化学
环境工程
工程类
肥料
作者
Zhenyu Shi,Dingxiang Wang,Zhanqi Gao,Xin Ji,Jing Zhang,Can Jin
标识
DOI:10.1016/j.jhazmat.2022.128772
摘要
In this study, we found that the introduction of Cu(II) (several μM, close to the concentration level of some real water/wastewater) in ferrate (Fe(VI)) oxidation can remarkably accelerate the abatement of various organic pollutants under slightly alkaline conditions. The results show that 5 μM sulfamethoxazole (SMX) can be completely degraded by Fe(VI) (50 μM) in the presence of 20 μM Cu(II) within 10 min at pH 8.0, which was 1.65 times higher than that by Fe(VI) alone. High-valent iron intermediates (i.e. Fe(V), Fe(IV)) and Cu(III) were generated as reactive species in the Cu(II)/Fe(VI) system, all of which contributed to the enhanced oxidation of SMX. Common water components, except for HCO3- and humic acid, exhibited no influence on SMX removal. Additionally, the enhanced removal of SMX by Cu(II)/Fe(VI) was also observed in real water with the benefit of total removal of Cu(II) by the ferrate resultant particles. Due to the presence of highly reactive and selective oxidant, the Cu(II)/Fe(VI) system could react readily with organic pollutants containing electron-rich moieties, such as phenol, olefin or amino groups. This study provided a simple, selective, and practical strategy for the abatement of organic pollutants and a simultaneous removal of Cu(II).
科研通智能强力驱动
Strongly Powered by AbleSci AI