Breast cancer detection using artificial intelligence techniques: A systematic literature review

乳腺癌 癌症 人工智能 深度学习 医学 疾病 乳腺摄影术 计算机科学 机器学习 医学物理学 病理 内科学
作者
Ali Bou Nassif,Manar Abu Talib,Qassim Nasir,Yaman Afadar,Omar Elgendy
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:127: 102276-102276 被引量:207
标识
DOI:10.1016/j.artmed.2022.102276
摘要

Cancer is one of the most dangerous diseases to humans, and yet no permanent cure has been developed for it. Breast cancer is one of the most common cancer types. According to the National Breast Cancer Foundation, in 2020 alone, more than 276,000 new cases of invasive breast cancer and more than 48,000 non-invasive cases were diagnosed in the US. To put these figures in perspective, 64% of these cases are diagnosed early in the disease's cycle, giving patients a 99% chance of survival. Artificial intelligence and machine learning have been used effectively in detection and treatment of several dangerous diseases, helping in early diagnosis and treatment, and thus increasing the patient's chance of survival. Deep learning has been designed to analyze the most important features affecting detection and treatment of serious diseases. For example, breast cancer can be detected using genes or histopathological imaging. Analysis at the genetic level is very expensive, so histopathological imaging is the most common approach used to detect breast cancer. In this research work, we systematically reviewed previous work done on detection and treatment of breast cancer using genetic sequencing or histopathological imaging with the help of deep learning and machine learning. We also provide recommendations to researchers who will work in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呢呢猪发布了新的文献求助10
刚刚
科研通AI5应助Mr_I采纳,获得30
1秒前
3秒前
3秒前
善学以致用应助superworm1采纳,获得10
3秒前
5秒前
简.....完成签到,获得积分10
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
VDC应助科研通管家采纳,获得20
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
杳鸢应助科研通管家采纳,获得10
7秒前
ysy发布了新的文献求助10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
天天快乐应助呢呢猪采纳,获得10
7秒前
弧光关注了科研通微信公众号
7秒前
ping发布了新的文献求助10
8秒前
8秒前
8秒前
黎明呦完成签到,获得积分10
8秒前
千堆雪完成签到,获得积分10
9秒前
子车茗应助怕黑友安采纳,获得20
9秒前
hahhhah发布了新的文献求助10
9秒前
壳壳13关注了科研通微信公众号
9秒前
Orange应助陈旧采纳,获得10
10秒前
11秒前
高定完成签到,获得积分10
11秒前
Ava应助明理的若灵采纳,获得10
13秒前
脑洞疼应助鲜蘑采纳,获得10
13秒前
科研小狗发布了新的文献求助10
14秒前
14秒前
Orange应助矮小的机器猫采纳,获得10
14秒前
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Comprehensive Supramolecular Chemistry II 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
A mandible of Pliosaurus brachyspondylus (Reptilia, Sauropterygia) from the Kimmeridgian of the Boulonnais (France) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3684977
求助须知:如何正确求助?哪些是违规求助? 3235860
关于积分的说明 9823031
捐赠科研通 2947601
什么是DOI,文献DOI怎么找? 1616338
邀请新用户注册赠送积分活动 763589
科研通“疑难数据库(出版商)”最低求助积分说明 737941